
Repeated Games 
 
Consider a static game Γ! = [𝐼, {𝑆"}" , {𝑢"}"]. In a repeated game, players play this game in 
periods 𝑡 = 1,2, … , 𝑇, with either 𝑇 < ∞ or 𝑇 = ∞. 
 
We have the following results: 
 

1. Playing the sta/c NE in every period is a SPNE. 
 

2. If Γ! has only one Nash Equilibrium and 𝑇 < ∞, then the only SPNE of the repeated 
game is the repe//on of the sta/c equilibrium in every period.  

 
We interpret this as the impossibility of cooperation (ie, coordinating on something different 
from the NE). 
 
Proof is simple and follow from the impossibility of credible rewards (for cooperation) or 
punishments (for non-cooperation). 
 
Games with mul-ple Nash equilibria 
 
If the static game has multiple equilibria, it may be possible to build different SPNE. 
 
Example: 
 

  
A B C D 

A 3,3 1,1 1,1 1,1 

B 1,1 7,7 1,8 1,1 

C 1,1 8,1 1,1 1,1 

D 1,1 1,1 1,1 5,5 

 
Assume this game is played twice. 
 
SPNE: play 𝐵 in the first period; if (𝐵, 𝐵) was the outcome of the first period, play 𝐷 in the 
second period; otherwise play 𝐴. 
 



 

Beliefs and Sequen3al Ra3onality 
 

 
 

 

  F A 

Out 0,2 0,2 

In1 -1,-1 3,0 

In2 -1,-1 2,1 

 
Problem: the only subgame is the whole game. Hence all NE are SPNE: {(𝑂𝑢𝑡, 𝐹), (𝐼𝑛#, 𝐴)}. 
 
We cannot use subgame perfection to rule out the non-credible threat that leads to (𝑂𝑢𝑡, 𝐹). 
 
It is non-credible because the Incumbent prefers 𝐴 to 𝐹 for any belief [𝜇, (1 − 𝜇)] that it may 
have over its decision nodes: 
 

𝑢$%(𝐹|𝜇) = 𝜇 ⋅ (−1) + (1 − 𝜇) ⋅ (−1) = −1 
 

𝑢$%(𝐴|𝜇) = 𝜇 ⋅ (0) + (1 − 𝜇) ⋅ (1) = 1 − 𝜇 > −1	∀𝜇 ∈ [0,1] 
 
Hence ∀𝜇, 𝐴 ≻$ 𝐹: 𝐹 is non-credible. 
 
The Incumbent’s strategy must be optimal for some belief 𝜇 about the Entrant’s choice. 
 
We need to extend the idea of sequential rationality to include beliefs: 
 

Entrant

✓
0

2

◆

Out

✓
�1

�1

◆

F

✓
3

0

◆

A

In1

✓
�1

�1

◆

F

✓
2

1

◆

A

In2

Incumbent



We want to apply it to parts of the game that look like a subgame but do not begin in an 
individual decision node. 
 
Definition: System of Beliefs: 𝜇 ∈ Γ&: 𝜇(𝑥) ∈ [0,1] for all decision node 𝑥 such that 
∑ 𝜇(𝑥)'∈) = 1, for all information set 𝐻. 
 
It is simply a distribution over nodes for each information set. 
 
That is, the player gives a probability for previous plays by other players, conditional to a given 
information set being reached. 
 
Now we can define sequential rationality: 
 
Definition: strategy profile 𝜎 = (𝜎#, … , 𝜎$) in Γ& is sequentially rational given 𝜇 if: 
 

𝐸K𝑢"())|𝐻, 𝜇, 𝜎"()), 𝜎,"())L ≥ K𝑢"())|𝐻, 𝜇, 𝜎N"()), 𝜎,"())L 
For all 𝜎N"()) ∈ ΔP𝑆"())Q. 
 
That is, expected utility depends now on two sources of uncertainty: other players’ actions in 𝐻 
(𝜎,"())), and previous actions (𝜇). 
If this condition holds for every information set 𝐻, then 𝜎 is sequentially rational given 𝜇. 
 
That is, no player would like to change his strategy when information set 𝐻 is reached, given 𝜇 
and 𝜎". 
 
Now we may define a (Weak) Perfect Bayesian Equilibrium: 
 

i- Strategies are sequen/ally ra/onal. 
ii- Beliefs are consistent with strategies whenever possible. 

 
The second point means that beliefs must be correct in equilibrium. 
 
Consistent Beliefs 
 
Consider initially only completely mixed strategies: there is a strictly positive probability for 
every action, in every information set. 
 
Then every information set is reached is reached with a strictly positive probability. 
 
We may now use Bayes’ Theorem: 
 

𝑃𝑟𝑜𝑏(𝑥|𝐻, 𝜎) =
𝑃𝑟𝑜𝑏(𝑥|𝜎)

∑ 𝑃𝑟𝑜𝑏(𝑥′|𝜎)'!∈)
 

 
Example: consistent beliefs using Bayes 



 

 
𝜎& = P1 4X , 1 2X , 1 4X Q 

𝑃𝑟𝑜𝑏(𝐼𝑛#	𝑜𝑟	𝐼𝑛-) =
1
4 +

1
2 =

1
2 

Hence: 
 

𝜇 = 𝑃𝑟𝑜𝑏(𝐼𝑛#|𝐼𝑛#	𝑜𝑟	𝐼𝑛-) =
1
2X

3
4X
=
2
3 

 
This is the incumbent’s belief 𝜇 consistent with the entrant’s strategy 𝜎. 
 
If the probability of a given information set is zero, that we may choose any distribution 𝜇 for 
nodes in this information set: we cannot use Bayes. 
 
We have a formal definition of equilibrium now: 
 
Definition: (𝜎, 𝜇) is a Weak Perfect Bayesian Equilibrium in Γ& if: 
 

i- 𝜎 is sequen/ally ra/onal given 𝜇. 
ii- If 𝑃𝑟𝑜𝑏(𝐻|𝜎) > 0, then 𝜇(𝑥) = ./01('|3)

./01()|3)
 for all ∀𝑥 ∈ 𝐻. 

 
Importantly, the equilibrium concept takes into account both strategies and beliefs. 
 
Beliefs are as important as strategies! 
 
Proposition: 𝜎 is a Nash Equilibrium in Γ& if and only if there is 𝜇 such that: 
 

i- 𝜎 is sequen/ally ra/onal given 𝜇, ∀𝐻	|	𝑃𝑟𝑜𝑏(𝐻|𝜎) > 0. 
ii- 𝜇 is obtained through Bayes’ rule whenever possible. 

 
Hence a Nash Equilibrium does not impose rationality is information sets such that 
𝑃𝑟𝑜𝑏(𝐻|𝜎) = 0. 
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In a Bayesian Perfect Equilibrium, we add sequential rationality for all information sets, even 
those out of the equilibrium path. (But we don’t impose consistency in those sets.) 
 
Example: 
 

 
 
 
Remember we have two NE’s / SPNE’s: {(𝑂𝑢𝑡, 𝐹), (𝐼𝑛#, 𝐴)}. But (𝑂𝑢𝑡, 𝐹) is off the equilibrium 
path.- 
 
But 𝑢$%(𝐹|𝜇) < 𝑢$%(𝐴|𝜇) for all 𝜇 ∈ [0,1]: there is no belief that makes it optimal for the 
Incumbent to fight after entry. 
 
(𝑂𝑢𝑡, 𝐹) is a non-credible threat. 
 
Then (𝑂𝑢𝑡, 𝐹) cannot be part of wBPE because there is no belief system 𝜇 such that 𝐹 is optimal 
for the incumbent, once his information set is reached. 
 
To show that (𝐼𝑛#, 𝐴) is a wBPE, we need to find 𝜇: 
 

𝜇 = 𝑃𝑟𝑜𝑏(𝐼𝑛#|𝐼𝑛#	𝑜𝑟	𝐼𝑛-) =
𝑃𝑟𝑜𝑏(𝐼𝑛#|𝐼𝑛#)

𝑃𝑟𝑜𝑏(𝐼𝑛#|𝐼𝑛#) + 𝑃𝑟𝑜𝑏(𝐼𝑛-|𝐼𝑛#)
=

1
1 + 0 

 
wBPE: {𝐼𝑛#, (𝐴, 𝜇 = 1)}. 
 
Example 9.C.3: Compute wPBE with (non-trivial) mixed strategies 
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(Assume 𝛾 > 0) 
 
Incumbent plays Fight with strictly positive probability iff: 
 

𝑢$%(𝐹) = 𝜇 ⋅ (−1) + (1 − 𝜇) ⋅ (−1) = −1 ≥ 𝜇 ⋅ (−2) + (1 − 𝜇) ⋅ 1 = 𝑢$%(𝐴) 
 

−1 ≥ −2𝜇 + 1 − 𝜇 
 

−1 ≥ 1 − 3𝜇 
 

3𝜇 ≥ 2 
 

𝜇 ≥ 2
3X  

 
If 	𝜇 > 2

3X , then Incumbent chooses Fight since 𝐹 ≻$ 𝐴. 
 
But then the Entrant chooses 𝐼𝑛-: 𝜎4 = 𝜎# = 0, 𝜎- = 1. 
 
Bayes then implies 𝜇 = 4

45#
= 0: absurd because we assumed 𝜇 > 2

3X . 
 
Strategies and beliefs are not compatible. 
 
Hence one cannot have 𝜇 > 2

3X . 
 
If 𝜇 < 2

3X , then Incumbent chooses Accommodate since 𝐴 ≻$ 𝐹. 
 
But then the Entrant chooses 𝐼𝑛#: 𝜎4 = 𝜎- = 0, 𝜎# = 1. 
 
Bayes then implies 𝜇 = #

45#
= 1: absurd because we assumed 𝜇 < 2

3X . 
 
Again, strategies and beliefs are non compatible. 
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It follows that in any wPBE, 𝜇 = 2

3X , so that 1 − 𝜇 = 1
3X . That is, 𝜇 = 2 ⋅ (1 − 𝜇). 

 
This implies 𝜎# = 2 ⋅ 𝜎-. 
 
And this implies 𝜎#, 𝜎- ∈ (0,1): otherwise Bayes would imply either 𝜇 = 0 or 𝜇 = 1, leading 
again to an inconsistency. 
 
It follows that in equilibrium, the Entrant must be indifferent between 𝐼𝑛# and 𝐼𝑛-. 
 
(We saw that a player must be indifferent between pure strategies in the support of a mixed 
strategy.) 
 

𝑢&(𝐼𝑛#) = 𝜎6 ⋅ (−1) + (1 − 𝜎6) ⋅ 3 = 𝜎6 ⋅ (𝛾) + (1 − 𝜎6) ⋅ 2 = 𝑢&(𝐼𝑛#) 
 

𝜎6 + 3 − 3 ⋅ 𝜎6 = 𝛾 ⋅ 𝜎6 + 2 − 2 ⋅ 𝜎6 
 

−4 ⋅ 𝜎6 + 2 ⋅ 𝜎6 − 𝛾 ⋅ 𝜎6 = −1 
 

𝜎6 ⋅ (1 + 𝛾) = 1 
 

𝜎6 =
1

𝛾 + 2	 , 𝜎7 =
𝛾 + 1
𝛾 + 2	 

 
Now we may compute the Entrant’s payoffs: 
 

𝑢&% (𝐼𝑛#) =
1

𝛾 + 2	 ⋅
(−1) +

𝛾 + 1
𝛾 + 2	 ⋅ 3 =

−1 + 3 ⋅ 𝛾 + 3
𝛾 + 2 =

3𝛾 + 2
𝛾 + 2 > 0 = 𝑢&%(𝑂𝑢𝑡) 

 
Hence 𝑢&%(𝐼𝑛#) = 𝑢&%(𝐼𝑛-) > 𝑢&%(𝑂𝑢𝑡), and 𝜎4 = 0. 
 
Then 𝜎# + 𝜎- = 1. But we saw that 𝜎# = 2 ⋅ 𝜎-. Hence (𝜎4, 𝜎#, 𝜎-) = P0, 2 3X , 1 3X Q. 
 
This concludes our example: we have strategies and beliefs, and they are compatible. 
 
wBPE may be too weak: no restrictions on beliefs off the equilibrium path. 
 
Example 9.C.4: 
 



 
 
We may build the following: wPBE: {[𝑥, (0.5,0.5)], [𝑙, (0.9,0.1)]} 
 
In this equilibrium, player 2 information set is never reached, so we may choose any beliefs. 
 
We chose beliefs (0.9,0.1), leading to 𝑙 ≻- 𝑟, leading to 𝑥 ≻# 𝑦. 
 
But (0.9,0.1) doesn’t make much sense because Nature uses (0.5,0.5): with these beliefs for 
player 2, 𝑟 ≻- 𝑙 and then 𝑦 ≻# 𝑥. 
 
Leaving beliefs unrestricted in some part of the game is as bad as leaving actions 
unrestricted! 
 
Example 9.C.5: yet another problem for the wPBE 
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One wPBE: {(𝑂𝑢𝑡, 𝐴), (𝐹, 𝜇 = 1)}. 
 
But only (𝐴, 𝐴) is NE in the subgame. (And one may build another wPBE.) 
 
The problem is that a Weak Perfect Bayesian Equilibrium does not need to be Subgame Perfect. 
 
Then we define Perfect Bayesian Equilibrium: it is a wPBE that induces a wPBE in every 
subgame. 
 
Same reasoning as in SPNE, which induces a NE in every subgame. 
 
An alternative is to consider a Sequential Equilibrium: 
 
Definition: (𝜎, 𝜇) is a Sequential Equilibrium in Γ& if: 
 

i- 𝜎 is sequen/ally ra/onal given 𝜇. 
ii- There is a sequence {𝜎8}	 of completely mixed strategies with lim𝜎8 = 𝜎 such that 

𝜇 = lim	 𝜇8, in which 𝜇8 is derived from 𝜎8 using Bayes’ rule. 
 
Every sequential equilibrium is a wBPE, but it does not hold in the opposite direction. 
 
Example: back to 9.C.4 
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(𝛼, 1 − 𝛼) are mixed strategies. 
 
Use Bayes: 
 

𝜇(𝛼) =
𝑃𝑟𝑜𝑏(𝑙𝑒𝑓𝑡	𝑛𝑜𝑑𝑒)

𝑃𝑟𝑜𝑏(𝑙𝑒𝑓𝑡	𝑛𝑜𝑑𝑒) + 𝑃𝑟𝑜𝑏(𝑟𝑖𝑔ℎ𝑡	𝑛𝑜𝑑𝑒) =
0.5 ⋅ (1 − 𝛼)

0.5 ⋅ (1 − 𝛼) + 0.5 ⋅ (1 − 𝛼) = 0.5 

 
Then: lim 𝜇(𝛼) = lim #

-
= #

-
. 

 
In any sequential equilibrium, 𝜇 = #

-
. 

 
It follows that 𝑟 ≻- 𝑙 and then 𝑦 ≻# 𝑥. 
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