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Let’s go back to basic consumer theory, without certainty. 

Consumer chooses 𝑥 ≥ 0 to solve 𝑀𝑎𝑥 𝑢(𝑥) subject to 𝑝 ⋅ 𝑥 ≤ 𝑤.  

We get a demand function 𝑥(𝑝) for an exogenous 𝑝. 

Our objective now is to endogenize prices. 

Main idea: add a supply = demand condition. 

 

Overview 

 

In the basic model, a consumer has an exogenous monetary income 𝑤. 

Now we will consider that the consumer has an initial endowment of goods 

available in this economy. 

Consumer i=1,…,I  has an endowment 𝑒𝑖 = (𝑒1
𝑖 , … , 𝑒𝐿

𝑖) for each of the 𝐿 goods in this 

economy. 

This endowment has value 𝑝 ⋅ 𝑒𝑖, so he solves now: 

𝑀𝑎𝑥 𝑢𝑖(𝑥) subject to 𝑝 ⋅ 𝑥 ≤ 𝑝 ⋅ 𝑒𝑖 

For example, a consumer may have 24 hours per day to allocate between leisure 

and work. The price of each hour is the wage rate in this economy. 

Prices are endogenous ⟹ income is endogenous. 



But prices are still exogenous for each consumer: agents are price takers. 

Prices are the same for everyone: 

“The fact the everyone in the economy faces the same prices is what 

generates the common information needed to coordinate disparate 

individual decisions.” (Levin) 

No production for the moment: pure exchange economy. 

General (Walrasian) equilibrium takes into account the fact that prices in one 

market affects decisions in other markets. 

 Different from partial equilibrium! 

 Related to income effect. 

Questions: 

An equilibrium exists? 

What are the properties of an equilibrium? 

(We don’t want to describe properties of elements of the empty set.) 

Walrasian Equilibrium: Definition 

 

A Walrasian equilibrium is a vector (𝑝, (𝑥𝑖)
𝑖=1

𝐼
 ) such that consumers optimize and 

markets clear. 

Formally: 

1. For all 𝑖 = 1, … , 𝐼, 𝑥𝑖 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥 𝑢𝑖(𝑥) subject to 𝑥𝑖 ∈ ℬ𝑖(𝑝) = {𝑥 ∈ ℝ+ ∶ 𝑝 ⋅

𝑥 ≤ 𝑝 ⋅ 𝑒𝑖} 

 



2. For all 𝑙 = 1, … , 𝐿, ∑ 𝑥𝑙
𝑖𝐼

𝑖=1 ≤ ∑ 𝑒𝑙
𝑖𝐼

𝑖=1  

 

Prices are always non-negative. 

Pareto Optimality 

 

Before we proceed, we need to define a criterion we will use to evaluate allocations. 

 

Definition: Feasibility 

An allocation (𝑥𝑖)
𝑖
 is feasible if for all 𝑙, ∑ 𝑥𝑙

𝑖𝐼
𝑖=1 ≤ ∑ 𝑒𝑙

𝑖𝐼
𝑖=1 . 

 

Definition: Pareto optimal (or efficient) allocations 

An allocation (𝑥𝑖)
𝑖
 is Pareto optimal if there is no other feasible allocation (�̂�𝑖)

𝑖
 

such that 𝑢𝑖(�̂�𝑖) ≥ 𝑢𝑖(𝑥𝑖) for all 𝑖 with strict inequality for at least one consumer. 

 

Traditional disclaimer: Pareto optimality says nothing about distribution. 

 

Assumptions 

 

For every consumer 𝑖, we assume: 

 

A1: 𝑢𝑖 is continuous. 



A2: 𝑢𝑖 is increasing: 𝑥′ ≫ 𝑥 ⟹ 𝑢𝑖(𝑥′) > 𝑢𝑖(𝑥) 

A3: 𝑢𝑖 is concave 

A4: 𝑒𝑖 ≫ 0 

 

Graphical Example: Edgeworth box 

 

 

 

To draw the budget line, we only need relative prices – that is, the slope 𝑝1/𝑝2. 

This is enough because we always have one point that the consumer can afford, for 

any prices: the initial allocation. 

As we change relative prices, we obtain new allocations: 



 

 

This is the offer curve for an agent. 

 

Walrasian Equilibrium in the Edgeworth Box 

 

Not an equilibrium: excessive demand for one good, excessive supply for the other: 

 

An equilibrium: 



 

Walrasian equilibrium is at intersection of Offer Curves. 

 It’s on the offer curves: it’s optimal for both consumers. 

 It’s at the intersection: markets clear. 

Equilibrium needs not be unique. There may be even no equilibrium. 

We have to find conditions for existence and uniqueness. 

 

Pareto optimality in the Edgeworth Box 

 

Pareto Set: set of all Pareto optimal allocations. 

Contract curve: subset of the Pareto set that both agents prefer to the initial 

allocation. 



 

A mutually agreeable bargain that leaves no gains on the table should lead to the Contract 

Curve. 

Indeed, under some conditions, every Walrasian equilibrium is on the Contract Curve. 

This is the first welfare theorem. 

First Welfare Theorem 

 

Every Walrasian equilibrium is Pareto optimal. 

Formal statement: 

Theorem: 

Let (𝑝, (𝑥𝑖)
𝑖
) be a Walrasian equilibrium. If agents are price takers, there is a price for 

each good, and A2 holds, then (𝑥𝑖)
𝑖
 is Pareto optimal. 

Proof: 

The proof is by contradiction. 

Assume (𝑥𝑖)
𝑖
 is a Walrasian equilibrium but is not Pareto optimal. 

Then there is an allocation (�̂�𝑖)
𝑖
 such that 𝑢𝑖(�̂�𝑖) ≥ 𝑢𝑖(𝑥𝑖) for all 𝑖 and 𝑢𝑖(�̂�𝑖) > 𝑢𝑖(𝑥𝑖) 

for some 𝑖′. 



The weak inequality implies 𝒑 ⋅ 𝒙𝒊 ≥ 𝒑 ⋅ 𝒙𝒊 = 𝒑 ⋅ 𝒆𝒊. Otherwise, we would have 

𝑝 ⋅ �̂�𝑖 < 𝑝 ⋅ 𝑒𝑖: that is, �̂�𝑖 is strictly cheaper than 𝑥𝑖, and is weakly preferred to 𝑥𝑖. 

Hence the consumer could increase slightly the amount of each good to get a new 

bundle �̂�𝑖 + 휀 ⋅ (1,… ,1) that is still cheaper but is strictly preferred to �̂�𝑖 (because 

of A2), and hence is strictly preferred to 𝑥𝑖. Hence 𝑥𝑖 cannot be optimal – 

contradiction, because 𝑥𝑖 is a Walrasian equilibrium, hence optimal. 

Analogously, the second inequality implies 𝒑 ⋅ 𝒙𝒊′ > 𝒑 ⋅ 𝒙𝒊′ = 𝒑 ⋅ 𝒆𝒊′. 

Otherwise, we would have 𝑝 ⋅ �̂�𝑖′ ≤ 𝑝 ⋅ 𝑒𝑖′. That is, �̂�𝑖′ would be affordable and 

strictly preferred to 𝑥𝑖′ - contradiction because 𝑥𝑖′ is assumed to be optimal. 

So we have: 

𝒑 ⋅ 𝒙𝒊 ≥ 𝒑 ⋅ 𝒙𝒊 = 𝒑 ⋅ 𝒆𝒊 

𝒑 ⋅ 𝒙𝒊′ > 𝒑 ⋅ 𝒙𝒊′ = 𝒑 ⋅ 𝒆𝒊′  

Since prices are non-negative, these conditions imply ∑ �̂�𝑙
𝑖𝐼

𝑖=1 > ∑ 𝑥𝑙
𝑖𝐼

𝑖=1 = ∑ 𝑒𝑙
𝑖𝐼

𝑖=1 . 

Hence (�̂�𝑖)
𝑖
 is not feasible – contradiction. 

QED 

 

Discussion 

 

The 1st Welfare Theorem states that all mutually beneficial gains may be achieved 

through trade, given the assumptions: 

Basic structure on choices, rationality, monotonicity, complete markets, no market 

power. 

This is Adam Smith’s invisible hand: decentralized market is efficient. 



It’s usual to write it as follows: 

Complete markets and absence of market power (plus basic 

assumptions on preferences) ⟹ every Walrasian equilibrium is 

efficient. 

We may write it the other way around: 

If a Walrasian equilibrium is not efficient (but basic assumptions 

hold), then either markets are incomplete, or there is market power. 

Incomplete markets: no price for some good, externality, asymmetric 

information… 

Market power: price-making behavior, such as monopolies. 

 

Second Welfare Theorem 

 

Every Pareto efficient allocation may be sustained as a Walrasian equilibrium, if 

preferences are convex. 

Formal Statement: 

Theorem: 

Assume (A1)-(A4) hold. If (𝑒𝑖)
𝑖
 is Pareto optimal, then there is a price vector 𝑝 ∈

ℝ+
𝐿  such that ((𝑝), (𝑒𝑖)

𝑖
) is a Walrasian equilibrium. 

Proof: 

1- We will use (a version of) the separating hyperplane theorem: if 𝐴 ⊆ ℝ𝑛 is 

convex and 𝑥 ∉ 𝐴, then there exists 𝑝 ≠ 0 such that 𝑝 ⋅ 𝑎 ≥ 𝑝 ⋅ 𝑥 for all 𝑎 ∈ 𝐴. 



2- Define the following set: 𝐴𝑖 = {𝑎 ∈ ℝ𝐿: 𝑒𝑖 + 𝑎 ≥ 0  𝑎𝑛𝑑  𝑢𝑖(𝑒𝑖 + 𝑎) > 𝑢𝑖(𝑒𝑖)}. 

This is a set of redistributions 𝑎 that make agent 𝑖 strictly better off. 

3- Preferences are convex (utility is concave), and hence 𝐴𝑖  is convex. 

4- Define now 𝐴 = ∑ 𝐴𝑖𝐼
𝑖=1 = {𝑎 ∈ ℝ𝐿: 𝑎 = ∑ 𝑎𝑖𝐼

𝑖=1  𝑤𝑖𝑡ℎ 𝑎𝑖 ∈ 𝐴𝑖}. This is a sum 

of redistributions. 

5- 𝐴𝑖  convex implies 𝐴 convex (exercise). 

6- 0 ∉ 𝐴. Otherwise there would be (𝑎𝑖)
𝑖
 with ∑ 𝑎𝑖𝐼

𝑖=1 = 0 and 𝑢𝑖(𝑒𝑖 + 𝑎) >

𝑢𝑖(𝑒𝑖) for all 𝑖, meaning that (𝑒𝑖)
𝑖
 is not Pareto optimal. 

7- The separating hyperplane theorem now implies that there exists 𝑝 ≠ 0 such 

that 𝑝 ⋅ 𝑎 ≥ 𝑝 ⋅ 0 = 0 for all 𝑎 ∈ 𝐴. (Point 6 implies that we can take 𝑥 = 0 in 

point 1.) In short, 𝑝 ⋅ 𝑎 ≥ 0   

8- 𝑎 ≫ 0 implies that 𝑎 ∈ 𝐴 by monotonicity: we can just split the strictly 

positive amount of each commodity among consumers and make everyone 

strictly better off due to monotonicity. 

9- The two previous points (𝑝 ⋅ 𝑎 ≥ 0 and 𝑎 ≫ 0) imply 𝑝 ≥ 0. If there were 

some 𝑝𝑙 < 0, then we could take 𝑎𝑙 very large, 𝑎𝑘 very small for all 𝑘 ≠ 𝑙, and 

get 𝑝 ⋅ 𝑎 < 0, a contradiction. 

10- Points 7 and 9 give us 𝑝 ≠ 0 and 𝑝 ≥ 0. Hence 𝑝 > 0. 

11- Now we need to show that ((𝑝), (𝑒𝑖)
𝑖
) is a Walrasian equilibrium. That is: 

consumers optimize and markets clear. 

12- Market clearing holds by definition since (𝑒𝑖)
𝑖
 is the initial allocation. 

13- We need to show that (𝑒𝑖)
𝑖
 is the optimal demand for prices 𝑝. To do that, 

we will show that if 𝑢𝑖(𝑥𝑖) > 𝑢𝑖(𝑒𝑖), then necessarily 𝑝 ⋅ 𝑥𝑖 > 𝑝 ⋅ 𝑒𝑖: that is, 

it is not in the budget set, and hence cannot be the solution to the consumer 

problem. 

14- If 𝑢𝑖(𝑥𝑖) > 𝑢𝑖(𝑒𝑖), then 𝑝 ⋅ 𝑥𝑖 ≥ 𝑝 ⋅ 𝑒𝑖. If not, then 𝑝 ⋅ 𝑥𝑖 < 𝑝 ⋅ 𝑒𝑖, and by 

monotonicity (or simply local non-satiation), it would be possible to find 

another allocation strictly better than 𝑥𝑖 and still affordable. 



15- By continuity of the utility function, there is 𝜆 < 1, but very close to one, 

such that 𝑢𝑖(𝜆𝑥𝑖) > 𝑢𝑖(𝑒𝑖) still holds. 

16- Repeating the argument in 14 now to 𝜆𝑥𝑖, one has 𝑝 ⋅ 𝜆𝑥𝑖 ≥ 𝑝 ⋅ 𝑒𝑖. But 𝜆 < 1 

implies that 𝑝 ⋅ 𝑥𝑖 > 𝑝 ⋅ 𝜆𝑥𝑖. Putting these two inequalities together, we get 

𝑝 ⋅ 𝑥𝑖 > 𝑝 ⋅ 𝑒𝑖. This is what we needed to show in 13, concluding the proof. 

QED. 

Characterization of Equilibrium 

Let’s make differentiability and concavity assumptions to use first order conditions 

to characterize Pareto optimal allocations. 

The idea is to give some intuition for what conditions must be satisfied on the 

margin at any Pareto optimal allocation, and hence, by the first Welfare theorem, 

at any Walrasian equilibrium. 

We also tie the set of Pareto optimal allocations to the set of allocations that 

maximize linear Bergson-Samuelson social welfare functions. 

One way to identify the set of Pareto optimal allocations 𝑥 = (𝑥1, … , 𝑥𝐼) is as 

solutions to the following program: 

max
𝑥

  𝑢1(𝑥1
1, … , 𝑥𝐿

1)

 s.t. 𝑢𝑖(𝑥1
𝑖 , … , 𝑥𝐿

𝑖 ) ≥ 𝑢‾ 𝑖  for 𝑖 = 2,… , 𝐼

∑  

𝑖

 𝑥𝑙
𝑖 ≤ ∑  

𝑖

  𝑒𝑙
𝑖  for 𝑙 = 1,… , 𝐿.

 

The idea here is to maximize the utility of the first consumer subject to feasibility 

and to the other consumers getting at least some pre-specified level of utility. 

By varying the level of required utility for consumers 2,… , 𝐼, we can recover the full 

set of Pareto optimal allocations. 

Under assumptions (A1)-(A3), all of the constraints must be binding at the solution  



If the utility constraint for 𝑖 were slack we could reduce 𝑥𝑖 by 휀 in all 

directions and increase 𝑥1 by the same amount; if the resource constraint 

were slack we could increase either 𝑥1 or one of the 𝑥𝑖’s. 

If we assume in addition that each agent has a differentiable utility function, the 

problem satisfies the conditions of the Kuhn-Tucker theorem 

We can use the Kuhn-Tucker conditions to characterize the solution. 

Let 𝜆𝑖 denote the Lagrange multiplier on agent 𝑖 's constraint and let 𝜇𝑙 denote the 

constraint on commodity 𝑙. 

Kuhn-Tucker conditions (eq’s 1): 

𝜆𝑖
∂𝑢𝑖

∂𝑥𝑙
𝑖
− 𝜇𝑙 ≤ 0 

𝑥𝑙
𝑖 ≥ 0 

(𝜆𝑖
∂𝑢𝑖

∂𝑥𝑙
𝑖
− 𝜇𝑙)𝑥𝑙

𝑖 = 0 

For an interior solution, these conditions reduce to: 

𝜆𝑖
∂𝑢𝑖

∂𝑥𝑙
𝑖
= 𝜇𝑙 

 

We also have the requirement that each of the (𝐼 − 1) + 𝐿 constraints is binding: 

𝑢𝑖(𝑥1
𝑖 , … , 𝑥𝐿

𝑖 ) = 𝑢‾ 𝑖  for 𝑖 = 2, … , 𝐼

∑  

𝑖

  𝑥𝑙
𝑖 = ∑ 

𝑖

  𝑒𝑙
𝑖  for 𝑙 = 1, … , 𝐿 

Adopt the convention that 𝜆1 = 1; you'll see where this bit of notation comes in 

useful later. 



Because each of the constraints binds at the optimum, 𝜆𝑖 > 0 for 𝑖 = 2,… , 𝐼 and 

𝜇𝑙 > 0 for all 𝑙. 

The Kuhn-Tucker conditions given in (1) are easy to interpret. 

Recall that 𝜆𝑖 is precisely the marginal value, or shadow price, of consumer 

𝑖 's income in terms of consumer 1's utility. 

That is, at the optimum taking a util away from agent 𝑖 would allow us to 

increase agent 1's utility by 𝜆𝑖. 

At the same time, 𝜇𝑙 is the shadow price on commodity 𝑙 (again in terms of agent 

1's utility). 

An extra unit of commodity 𝑙 would allow us to increase agent 1 's utility by 

𝜇𝑙 while holding everyone else's utility constant. 

Assuming that each consumer consumes a positive amount of each good at the 

optimum, so that 𝑥𝑙
𝑖 > 0 for all 𝑖, 𝑙, we can derive that at any Pareto efficient 

allocation, we have the following relationship: 

𝑀𝑅𝑆𝑘𝑙
𝑖 =

∂𝑢𝑖/ ∂𝑥𝑘
𝑖

∂𝑢𝑖/ ∂𝑥𝑙
𝑖
=

𝜇𝑘

𝜇𝑙
=

∂𝑢𝑗/ ∂𝑥𝑘
𝑗

∂𝑢𝑗/ ∂𝑥𝑙
𝑗 = 𝑀𝑅𝑆𝑘𝑙

𝑗
. 

That is, at the optimum, the marginal rates of substitution of every agent for every 

commodity pair 𝑘, 𝑙 must be equal to each other and to the ratio of the shadow 

prices 𝜇𝑘 and 𝜇𝑙. 

This is precisely the tangency condition from our earlier Edgeworth box 

picture. 

Welfare theorems revisited 

 



Within this simple framework of differentiable concave utility functions, we can 

link the Pareto optimal allocations to the set of Walrasian equilibria.  

Suppose that 𝑥 is a Pareto optimal allocation as characterized above. 

Let 𝑒𝑖 = 𝑥𝑖 and define prices 𝑝𝑙 = 𝜇𝑙. Given these prices and endowments, consider 

the optimization problem facing consumer 𝑖 : 

 max
�̃�𝑖

  𝑢𝑖(�̃�𝑖)

 s.t. 𝑝 ⋅ �̃�𝑖 ≤ 𝑝 ⋅ 𝑒𝑖
 

Again, we know the budget constraint will bind at the optimum given our 

assumptions (that's Walras' Law). 

Moreover, we can use the Kuhn-Tucker conditions to characterize the optimum.  

Letting 𝜈1, … , 𝜈𝐼  denote the Lagrange multipliers on the budget constraints of 

agents 1, … , 𝐼, the Kuhn-Tucker conditions state that a necessary and sufficient 

condition for (𝑥1, … , 𝑥𝐼; 𝜈1, … , 𝜈𝐼) to solve the 𝐼 utility maximization problems given 

prices 𝑝 is that for all 𝑖, 𝑙 (eq’s 2): 

∂𝑢𝑖

∂𝑥𝑙
𝑖
− 𝜈𝑖 ⋅ 𝑝𝑙 ≤ 0 

 𝑥𝑙
𝑖 ≥ 0 

(
∂𝑢𝑖

∂𝑥𝑙
𝑖
− 𝜈𝑖 ⋅ 𝑝𝑙) ⋅ 𝑥𝑙

𝑖 = 0 

and in addition, each of the resource constraints bind. 

Again, for an interior solution: 

∂𝑢𝑖

∂𝑥𝑙
𝑖
= 𝜈𝑖 ⋅ 𝑝𝑙  



 

If 𝑥 is a Pareto optimal allocation, one solution is for each agent 𝑖 to consume 𝑥𝑖 =

(𝑥1
𝑖 , … , 𝑥𝐿

𝑖 ) with Lagrange multipliers 𝜈𝑖 = 1/𝜆𝑖. 

Because given prices 𝑝𝑙 = 𝜇𝑙 and endowments 𝑒𝑖 = 𝑥𝑖, there is an exact 

equivalence between the Kuhn-Tucker conditions of the 𝐼 utility 

maximization problems and the Kuhn-Tucker conditions of the earlier 

Pareto problem. 

Therefore it follows that if 𝑥 is a Pareto optimal allocation, and 𝜇1, … , 𝜇𝐿 the 

commodity shadow prices from the Pareto problem above, then (𝜇, 𝑥) is a 

Walrasian equilibrium of the economy ℰ = ((𝑢𝑖)
𝑖∈ℐ

, (𝑥𝑖)
𝑖∈ℐ

). 

This is precisely the Second Welfare Theorem. 

To obtain the First Welfare Theorem, we go the other way. 

If endowments 𝑒 and prices 𝑝 are given and each agent maximizes utility, it must 

be the case at the solution consumption bundles 𝑥1, … , 𝑥𝐼 , (2) holds and each 

consumer's budget constraint is satisfied. 

Then consider the Pareto problem with 𝑢‾ 𝑖 = 𝑢𝑖(𝑥𝑖) for agents 2, … , 𝐼. 

It is easy to check that (1) and each of the constraints is satisfied at 𝑥1, … , 𝑥𝐼 if we 

define 𝜇𝑙 = 𝑝𝑙 , 𝜆
𝑖 = 1/𝜈𝑖, and 𝑢‾ 𝑖 = 𝑢𝑖(𝑥𝑖). 

Therefore any Walrasian equilibrium is Pareto optimal. 

A Social Welfare Function 

There is an alternative approach to characterizing Pareto efficient allocations that 

is sometimes useful. 



In this approach, one considers maximizing a linear (Bergson-Samuelson) social 

welfare function of the form ∑𝑖  𝛽
𝑖𝑢𝑖 subject to a resource constraint. 

The program is: 

 max
𝑥1,…,𝑥𝐼

 ∑  

𝑖

 𝛽𝑖𝑢𝑖(𝑥1
𝑖 , … , 𝑥𝐿

𝑖 )

 s.t. ∑ 

𝑖

 𝑥𝑖 ≤ ∑  

𝑖

  𝑒𝑖
 

Given monotonicity of utility functions, the resource constraint will bind at the 

optimum and the additional Kuhn-Tucker condition for optimality is that for all 

agents 𝑖 and commodities 𝑙 (eq’s 3): 

𝛽𝑖
∂𝑢𝑖

∂𝑥𝑙
𝑖
− 𝛿𝑙 ≤ 0  

𝑥𝑙
𝑖 ≥ 0  

(𝛽𝑖
∂𝑢𝑖

∂𝑥𝑙
𝑖
− 𝛿𝑙) ⋅ 𝑥𝑙

𝑖 = 0 

Interior solution: 

𝛽𝑖
∂𝑢𝑖

∂𝑥𝑙
𝑖
= 𝛿𝑙  

 

Letting 𝛽𝑖 = 𝜆𝑖 and 𝛿𝑙 = 𝜇𝑙  we have an exact correspondence between (1) and (3).  

Letting 𝛽𝑖 = 1/𝜈𝑖 and 𝛿𝑙 = 𝑝𝑙, we have an exact correspondence between (2) and 

(3). 

So not only do Pareto optimal allocations coincide with Walrasian equilibrium 

allocations coincide in the sense of the welfare theorems, they coincide with 

allocations that maximize a linear social welfare function. 



Existence of Walrasian Equilibrium 

The Model: 
 

There are 𝑖 = 1, … , 𝐼 agents and 𝑙 = 1,… , 𝐿 commodities. 

Each agent has a utility function 𝑢𝑖: ℝ+
𝐿 → ℝ and an endowment 𝑒𝑖 ∈ ℝ+

𝐿 . 

Each agent chooses a consumption bundle 𝑥𝑖 ∈ ℝ+
𝐿  to maximize 𝑢𝑖 subject to 𝑝 ⋅

𝑥𝑖 ≤ 𝑝 ⋅ 𝑒𝑖, with 𝑝 ∈ ℝ+
𝐿 , or analogously we write the restriction as 𝑥𝑖 ∈ 𝐵𝑖(𝑝). 

Agents are price takers. 

 

Assumptions: 
 

Preferences are continuous, strictly monotone and weakly convex. 

Hence optimal choice needs not be unique, and Marshallian demand does not need 

to be a function: it may be a correspondence. 

That is, a pair (𝑝, 𝑤) may be associated to different values 𝑥(𝑝, 𝑤). The image of 

(𝑝, 𝑤) is a subset of 𝑋. In general, we will use the notation 𝐹: 𝑋 ⇉ 𝑌 for a 

correspondence. 

For all agents, 𝑒𝑖 ≫ 0. 

We define a Walrasian equilibrium as a vector of prices and consumption bundles 

for each agent (𝑝, (𝑥𝑖)
𝑖
) such that: 

Choices are optimal: for all 𝑖,  𝑥𝑖 ∈ 𝑎𝑟𝑔max
𝑥𝑖∈𝐵𝑖(𝑝)

𝑢𝑖(𝑝) 

Markets clear: for all 𝑙, ∑ 𝑥𝑙
𝑖𝐼

𝑖=1 = ∑ 𝑒𝑙
𝑖𝐼

𝑖=1  



Roadmap: 
 

1- Define excess demand correspondence: 

𝑧𝑙(𝑝) = ∑[𝑥𝑖
𝑙(𝑝) − 𝑒𝑖

𝑙]

𝐼

𝑖=1

 

 

𝑍(𝑝) =

[
 
 
 
𝑧1(𝑝)

𝑧2(𝑝)
⋮

𝑧𝐿(𝑝)]
 
 
 
 

2- Recast definition of equilibrium as 𝑍(𝑝) = 0 (or more generally 𝑍(𝑝∗) ≤ 0) 

Consumers use Marshallian demand (that is, they optimize) and 

markets clear. 

3- Establish properties of 𝑍(𝑝):  

Uhc and non-empty (follows from Theorem of the Maximum) 

Convex for all 𝑝 

Bounded below 

If 𝑝𝑛 → 𝑝 ≠ 0 with some 𝑝𝑙 = 0, then 𝑚𝑎𝑥{𝑧1(𝑝𝑛),… , 𝑧𝐿(𝑝𝑛)} → ∞ 

Homogenous of degree zero 

𝑝𝑍(𝑝)=0 for all 𝑝 (Walras’ Law) 

 

4- Define a (weird) correspondence 𝑚(𝑍(𝑝)) = 𝑎𝑟𝑔𝑚𝑎𝑥�̂�∈Δ𝐿 �̂�𝑍(𝑝) 

Unlike 𝑍(𝑝), domain and codomain are the same 

Properties: convex, uhc, non-empty 

 

5- Kakutani’s fixed point theorem implies there is 𝑝∗ such that 𝑚(𝑍(𝑝∗)) = 𝑝∗ 

 

6-  Lastly, show that 𝑍(𝑝∗) ≤ 0: that is, 𝑝∗ and associated demands are a 

Walrasian equilibrium 



Equilibrium Existence: 
 

We need the following definition: 

𝐺(𝐹) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌: 𝑦 ∈ 𝐹(𝑥)} is the graph of 𝐹. 

Let’s define now a fixed point. 

In a simple function 𝑓: ℝ ⟶ ℝ , a fixed point is 𝑥 such that 𝑥 = 𝑓(𝑥). For example, 

if 𝑓(𝑥) = 𝑥2, then 𝑥 = 𝑥2 = 1 is a fixed point. 

We may generalize it for a correspondence. 𝐹: 𝑋 ⇉ 𝑌. Now we write 𝑥 ∈ 𝐹(𝑥) for a 

fixed point. 

We need to find conditions that guarantee that a fixed point exists.  

Kakutani’s Fixed Point Theorem 
 

Let 𝑋 ⊂ ℝ𝑛 compact, convex, non-empty. Let 𝐹: 𝑋 ⇉ 𝑋 such that 𝐺(𝐹) is closed, 

and 𝐹(𝑥) is convex for all 𝑥 ∈ 𝑋. Then this correspondence has a fixed point 𝑥∗ ∈

𝐹(𝑥∗). 

There is another way to present the same result. 

Consider again 𝑋 ⊂ ℝ𝑛 compact, convex, non-empty. Let 𝐹: 𝑋 ⇉ 𝑋 be non-empty, 

convex, and upper-hemicontinuous (uhc). Then this correspondence has a fixed 

point 𝑥∗ ∈ 𝐹(𝑥∗). 

Definition of uhc. Consider 𝑋, 𝑌 ⊂ ℝ𝑛 compact and convex. Let 𝐹: 𝑋 ⇉ 𝑌. Consider 

{𝑥𝑛} ⊂ 𝑋, {𝑦𝑛} ⊂ 𝑌 and 𝑥𝑛 ⟶ 𝑥, 𝑦𝑛 ⟶ 𝑦 and 𝑦𝑛 ∈ 𝐹(𝑥𝑛) for all 𝑛. Then 𝑦 ∈ 𝐹(𝑥). 

Uhc is equivalent to closed graph only if 𝑌 is compact, which is our case. 

We will also need the following result: 



Maximum Theorem: 

 

Assume 𝐶: 𝑄 ⇒ ℝ𝑁 is a continuous correspondence, and 𝑐(𝑞) is compact and non-

empty for all 𝑞 ∈ 𝑄. Assume 𝑓: ℝ𝑁 → ℝ is a continuous functions. Consider the 

problem max
𝑥∈𝑐(𝑞)

𝑓(𝑥). Then the maximizer 𝑥∗(𝑞) is upper-hemi continuous and the 

value function 𝑓(𝑥∗(𝑞)) is continuous. 

Let’s go back to the consumer problem (CP). Marshallian demand: 𝑥𝑖(𝑝) =

𝑥(𝑝, 𝑝𝑒). 

Notice that 𝑥𝑖(𝜆𝑝) = 𝑥(𝜆𝑝, 𝜆𝑝𝑒) = 𝑥(𝑝, 𝑝𝑒) = 𝑥𝑖(𝑝). 

The first and the last equalities use the definition of 𝑥𝑖(𝑝) in the previous 

paragraph. 

The second equality uses the fact that Marshallian demand is unchanged if 

we multiply both prices and income by a positive number. 

This means that 𝑥𝑖(𝑝) is homogenous of degree zero in prices. 

 

Moreover, strictly monotone preferences implies that the consumer spends all his 

income: 𝑝𝑥𝑖(𝑝, 𝑝𝑒) = 𝑝𝑒, and hence 𝑝[𝑥𝑖(𝑝, 𝑝𝑒) − 𝑒] = 0. 

This holds for any vector of prices 𝑝. 

Define excess demand: 

𝑧𝑙(𝑝) = ∑ [𝑥𝑖
𝑙(𝑝) − 𝑒𝑖

𝑙]𝐼
𝑖=1 . 

Define the following notation: 

 



𝑍(𝑝) =

[
 
 
 
𝑧1(𝑝)

𝑧2(𝑝)
⋮

𝑧𝐿(𝑝)]
 
 
 
 

This is a vector of excess demand, for each good, at prices 𝑝. 

Another way to define a Walrasian equilibrium: 

It is a vector (𝑝, {𝑥𝑙
𝑖}

𝑙,𝑖
) such that 𝑍(𝑝) = 0. 

This summarizes two conditions: consumers optimize (implicit in the use of 

Marshallian demands) and markets clear. 

One may also use 𝑍(𝑝) ≤ 0, with 𝑍(𝑝) < 0 for prices equal to zero. 

Notice that if 𝑍(𝑝) = 0, then 𝑍(𝜆𝑝) = 0 for all 𝜆 > 0. 

That is, excess demand is also homogenous of degree zero in prices: this property 

is inherited from 𝑥𝑖(𝜆𝑝) = 𝑥𝑖(𝜆𝑝), seen above, since endowment 𝑒𝑖
𝑙 is constant (i.e., 

does not depend on prices). 

This also implies 𝑝 ⋅ 𝑍(𝑝) = 0 for any vector of prices: this is Walras’ Law. 

This has an important interpretation: we only find relative prices in equilibrium. 

Turn now to our equilibrium result. 

The function 𝑍(𝑝) has the following properties: 

Uhc and non-empty (follows from Theorem of the Maximum). There is only one 

detail: we cannot apply the theorem directly to CP because 𝐵𝑖(𝑝) is not compact 

for prices going to zero. 

To solve this, simply define that the budget set is 𝐵𝑖(𝑝) ∩ 𝑇, in which: 

 𝑇 = {𝑥 ∈ ℝ+
𝐿 : 𝑥 ≤ 2 ⋅ ∑ 𝑒𝑖𝐼

𝑖=1 }. 



CP is unchanged but now we have a compact set, and can apply the 

Maximum Theorem to conclude that the solution 𝑥𝑖(𝑝) is Uhc and non-

empty.) 

Convex for all 𝒑 (direct consequence of result from consumer theory: solution is 

convex if preferences are convex) 

Bounded below: there is 𝑍 > 0 such that for all 𝑙 and all 𝑝, 𝑧𝑙(𝑝) > −𝑍. (Lowest 

possible demand is 𝑥𝑙 = 0, and hence 𝑧𝑙 ≥ −∑ 𝑒𝑖
𝑙𝐼

𝑖=1  for all goods.) 

If 𝒑𝒏 → 𝒑 ≠ 𝟎 with some coordinate 𝒑𝒍 = 𝟎, then 𝒎𝒂𝒙{𝒛𝟏(𝒑𝒏),… , 𝒛𝑳(𝒑𝒏)} →

∞. (If some but not all prices go to zero, some consumer must have wealth going 

to infinity, and then strongly monotone preferences imply that his demand for the 

good 𝑝𝑙 = 0 goes to infinity.) 

Homogenous of degree zero (shown above) 

𝒑𝒁(𝒑)=0 for all 𝒑 (Walras’ Law – shown above) 

And these properties imply that there is a Walrasian equilibrium as defined above. 

Let us show this. 

Begin normalizing prices. We can always do this in general equilibrium because, 

as we saw, we only look at relative prices. Choose the following normalization: 

𝑝1 + 𝑝2 + ⋯+ 𝑝𝐿 = 1 

That is, divide all prices by the sum of prices, which must be non-negative: 𝑝𝑙 ≥ 0 

for all 𝑙. 

This is a simplex. The set of all prices that respect these restrictions is Δ𝐿. That is, 

𝑝 ∈ Δ𝐿. This set is closed, bounded (hence compact), and convex. 

(Consider the case of two goods for visualization.) 



This simplex will be our domain and codomain 𝑋. 

Now let us define the following function: 

𝑍: Δ𝐿 ⇉ ℝ𝐿  

For each price vector 𝑝, 𝑍(𝑝) informs the excess demand for each good 𝑙. 

This is a correspondence that takes from Δ𝐿 to ℝ𝐿. Not enough to use Kakutani’s 

theorem because domain and codomain are not the same. 

Define the following function: 

𝒎(𝒁(𝒑)) = 𝒂𝒓𝒈𝒎𝒂𝒙�̂�∈Δ𝐿 �̂�𝒁(𝒑) 

Notice that 𝑚(𝑍) is a vector of prices: it is the vector of prices that maximizes �̂�𝑍(𝑝). 

Observe that we first have �̂� and then have 𝑝: we are choosing �̂� to maximize the 

value of excess demand at the original vector price 𝑝. 

This is a continuous function on a compact domain, and hence the solution set is 

non-empty. 

So we use the correspondence 𝑍 to go from Δ𝐿 to ℝ𝐿, and then apply 𝑚(𝑍) to go 

from ℝ𝐿 to Δ𝐿. This is a correspondence composition: Δ𝐿 ⇉ ℝ𝐿 ⇉ Δ𝐿.  

Let us present now a series of results. 

 

Lemma 1. 𝑚(𝑍) is convex. 

 

Proof. Consider 𝑝1, 𝑝2 ∈ Δ𝐿 such that 𝑝1, 𝑝2 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥�̂�∈Δ𝐿 �̂�𝑍(𝑝). 

 



Hence 𝑝1𝑍(𝑝) = 𝑝2𝑍(𝑝). Then for all 𝜆 ∈ [0,1]: 

 

𝜆𝑝1𝑍(𝑝) + (1 − 𝜆)𝑝2𝑍(𝑝) = 𝑝1𝑍(𝑝) = 𝑝2𝑍(𝑝) 

 

That is, 𝜆𝑝1 + (1 − 𝜆)𝑝2 also maximizes �̂�𝒁(𝒑). 

Hence 𝜆𝑝1 + (1 − 𝜆)𝑝2 ∈ 𝑚(𝑍). 

We conclude that 𝑚(𝑍) is convex, since it contains any convex combination of two 

of its elements. QED. 

 

Lemma 2. 𝑚(𝑍) is uhc. 

 

Proof. Take some sequence 𝑝𝑛 → 𝑝∗. Consider 𝑍𝑛 → 𝑍∗ = 𝑍(𝑝∗) and 𝑝𝑛 ∈ 𝑚(𝑍𝑛). 

We need to show that 𝑝∗ ∈ 𝑚(𝑍∗).  

 

Assume 𝑝∗ ∉  𝑚(𝑍∗). 

 

Then there is some �̅� ≠ 𝑝∗ such that  �̅�𝑍∗ > 𝑝∗𝑍∗. This is simply the definition of 

𝑚(𝑍∗). 

 

But 𝑍𝑛 → 𝑍∗ and 𝑝𝑛 → 𝑝∗. Hence �̅�𝑍𝑛 → �̅�𝑍∗. Also 𝑝𝑛𝑍𝑛 → 𝑝∗𝑍∗. 

 



So we may choose 𝑛 big enough such that: 

 

|�̅�𝑍𝑛 − �̅�𝑍∗| <
휀

2
 

|𝑝𝑛𝑍𝑛 − 𝑝∗𝑍∗| <
휀

2
 

Remember now that �̅�𝑍∗ > 𝑝∗𝑍∗. This allows us to conclude: 

�̅�𝑍𝑛 > 𝑝∗𝑍∗ +
휀

2
 

𝑝∗𝑍∗ +
휀

2
> 𝑝𝑛𝑍𝑛 

The first line is implied by two facts: �̅�𝑍𝑛 is close to �̅�𝑍∗ (inequality in yellow), and 

�̅�𝑍∗ > 𝑝∗𝑍∗. 

The second line is a direct implication of the inequality in green. 

 

These two last lines imply: 

�̅�𝑍𝑛 > 𝑝𝑛𝑍𝑛 

That is, 𝑝𝑛 does not maximize 𝑝𝑛𝑍𝑛, which is absurd: we assumed that 𝑝𝑛 

maximizes 𝑝𝑛𝑍𝑛. QED. 

This is argument is similar to: 𝑎𝑛 ≥ 0 and 𝑎𝑛 → 𝑎 imply 𝑎 ≥ 0. This argument is 

simple: the difficulty is basically notation and an unusual environment, not 

mathematics. 

Now let us build the following correspondence 𝑔:Δ𝐿 ⇉ Δ𝐿 as follows: 

𝑔(𝑝) = 𝑚(𝑍(𝑝)) 



That is, we have Δ𝐿 ⇉ ℝ𝐿 ⇉ Δ𝐿. We may apply Kakutani on the correspondence 𝑔. 

We have the following result: the composition of non-empty, uhc and convex 

correspondences is also non-empty, uhc and convex. (Exercise.) 

Hence we may apply Kakutani’s fixed point theorem to conclude that there is 𝑝∗ ∈

𝑔(𝑝∗).  

Lastly, we need to show that 𝑝∗ is a vector of equilibrium prices. 

Write the definition of 𝑝∗ ∈ 𝑔(𝑝∗): 

𝑝∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥�̂�∈Δ𝐿 �̂�𝑍(𝑝∗) 

This means: 

𝑝∗𝑍(𝑝∗) ≥ 𝑝𝑍(𝑝∗) 

For all 𝑝 ∈ Δ𝐿. Keep this in mind: we will use it in the last line of the proof below. 

 

Let us prove our last lemma. 

 

Lemma 3. 𝑍(𝑝∗) ≤ 0. 

 

Proof. Suppose that there is a commodity 𝑙 such that 𝑍𝑙(𝑝
∗) > 0.  

 

Choose �̃� = (0,…0,1,0,… ,0): that is, �̃�𝑙 = 1, and �̃�𝑘 = 0 for 𝑘 ≠ 𝑙. 

 



Then: 

 

�̃�𝑍(𝑝∗) = 𝑍𝑙(𝑝
∗) > 0 = 𝑝∗𝑍(𝑝∗) 

 

The last equality is Walras’ Law, which applies for any vector of prices – in 

particular, it applies for 𝑝∗. 

This is absurd because 𝑝∗𝑍(𝑝∗) ≥ 𝑝𝑍(𝑝∗) for all 𝑝 ∈ Δ𝐿. QED. 

Production in General Equilibrium 
 

Everything we have done so far has been for the special case of an exchange 

economy where goods simply come from nowhere as endowments. 

Easy to incorporate firms and production into our general equilibrium model, so 

long as we assume: 

(1) no increasing returns to scale 

(2) perfectly competitive price-taking firms. 

In this section, we outline the more general Arrow-Debreu model with production, 

revisit the welfare theorems and equilibrium existence, and then consider some 

simple examples. 

Adding Production to the Model 

Consumers 𝑖 = 1, … , 𝐼 of the earlier model, with utility functions 𝑢1, … , 𝑢𝐼. 

𝐾 firms 𝑘 ∈ 𝒦 with production sets 𝑌𝑘 ∈ ℝ𝑁. 

Each 𝑌𝑘 is a set of production plans: if 𝑦 ∈ 𝑌𝑘, then 𝑦𝑙 < 0 means good 𝑙 is being 

used as an input; 𝑦𝑙 > 0 means good 𝑙 is being produced as an output. 



Firms are owned by the households. 

Let 𝛼𝑘𝑖 denote 𝑖 's share of firm 𝑘. 

A production economy is then: 

ℰ = ((𝑢𝑖 , 𝑒𝑖 , (𝛼𝑘𝑖)
𝑘∈𝒦

)
𝑖∈ℐ

, (𝑌𝑘)𝑘∈𝒦) .  

Firm 𝑘 takes prices 𝑝 ∈ ℝ𝑁 as given and choose a production plan 𝑦𝑘 ∈ 𝑌𝑘 to solve: 

max
𝑦∈𝑌𝑘

  𝑝 ⋅ 𝑦. 

Definition 6 A Walrasian equilibrium is a vector (𝑝, (𝑥𝑖)
𝑖∈ℐ

, (𝑦𝑘)𝑘∈𝒦) such that 

Firms maximize profits: for all 𝑘 ∈ 𝒦, 

𝑦𝑘 ∈ arg max
𝑦∈𝑌𝑘

 𝑝 ⋅ 𝑦 

Consumers maximize utility: for all 𝑖 ∈ ℐ, 

𝑥𝑖 ∈  arg max
𝑥

 𝑢𝑖(𝑥)

 s.t. 𝑝 ⋅ (𝑥 − 𝑒𝑖) − 𝑝 ⋅ ∑  

𝑘∈𝒦

 𝛼𝑘𝑖𝑦𝑘 ≤ 0
 

Markets clear: 

∑ 

𝑖∈ℐ

(𝑥𝑖 − 𝑒𝑖) − ∑  

𝑘∈𝒦

𝑦𝑘 = 0. 

Assumptions about Production 

We'll want to make some assumptions on 𝑌𝑘 to ensure that an equilibrium exists 

with production. 

The simplest such assumption is that 𝑌𝑘 is convex and compact for all firms 𝑘, but 

it seems unreasonable to assume that a production set is bounded. 



Instead, we assume: 

(A5) For all firms 𝑘 ∈ 𝒦, 𝑌𝑘 is closed and convex. 

(A6) For all firms 𝑘 ∈ 𝒦, 0 ∈ 𝑌𝑘 and ℝ−−
𝑁 ⊂ 𝑌𝑘. 

These assumptions rule out increasing returns to scale. 

If 𝑦 ∈ 𝑌𝑘, then so is 𝛽𝑌𝑘 for any 0 < 𝛽 < 1. 

So it is always possible to "scale" down production or break it up into 

arbitrarily small productive units. 

We need one further assumption to ensure that firms cannot cooperate in a clever 

way and produce an infinite amount of goods - i.e. to ensure that one firm doesn't 

produce 1 pound of iron into 1 pound of steel, while another firm produces 2 

pounds of iron from that 1 pound of steel. 

Debreu (1959) makes an assumption directly on the aggregate production 

possibilities: 

(A7) If 𝑌 = ∑𝑘∈𝒦  𝑌𝑘, then 𝑌 ∩ −𝑌 = {0}. 

Think about why this rules out the above story. With these assumptions in place, 

our earlier welfare and existence results carry through. 

Efficiency and Existence 

The definition of feasibility and Pareto efficiency carry through immediately to the 

case of production. 

Definition 7 An allocation and production plan ((𝑥𝑖)
𝑖∈ℐ

, (𝑦𝑘)𝑘∈𝒦) is feasible if 

∑𝑖∈ℐ  (𝑥
𝑖 − 𝑒𝑖) − ∑𝑘∈𝒦  𝑦𝑘 ≤ 0. 

Definition 8 A feasible allocation and production plan ((𝑥𝑖)
𝑖∈ℐ

, (𝑦𝑘)𝑘∈𝒦) is Pareto 

efficient if there is no other feasible allocation and production plan 



((�̂�𝑖)
𝑖∈ℐ

, (�̂�𝑘)𝑘∈𝒦) satisfying 𝑢𝑖(�̂�𝑖) ≥ 𝑢𝑖(𝑥𝑖) for all 𝑖, with strict inequality for at 

least one 𝑖′. 

We now state the two welfare theorems. 

Theorem 12 (First Welfare Theorem) Assume ℰ is a production economy that satisfies 

(A2). If (𝑝, (𝑥𝑖)
𝑖∈ℐ

, (𝑦𝑘)𝑘∈𝒦) is a Walrasian equilibrium for ℰ, then 

((𝑥𝑖)
𝑖∈ℐ

, (𝑦𝑘)𝑘∈𝒦) is Pareto efficient. 

The proof is virtually identical to the exchange case. 

Theorem 13 (Second Welfare Theorem) Assume utility functions and production sets 

satisfy (A2)-(A5) and that ((𝑥𝑖)
𝑖∈ℐ

, (𝑦𝑘)𝑘∈𝒦) is a Pareto efficient allocation. 

Suppose 𝑥𝑖 ≫ 0 for all 𝑖. Then there is a price vector 𝑝 > 0, ownership shares 

(𝛼𝑘𝑖)
𝑖,𝑘

, and endowments (𝑒𝑖)
𝑖
 such that (𝑝, (𝑥𝑖)

𝑖∈ℐ
, (𝑦𝑘)𝑘∈𝒦) is a Walrasian 

equilibrium given these endowments and ownership shares. 

The proof again relies on the Separating Hyperplane Theorem; you can check it out 

in MWG. 

Key assumption is convexity of the production possibility sets. This is what enables 

us to find a separating hyperplane between the set of feasible production plans and 

the aggregate "better than" set. One then shows that the separating hyperplane is 

a supporting price vector. 

What about equilibrium existence? If we impose all three of the Assumptions 

above, we're in good shape. 

Theorem 14 (Existence of Equilibrium) Assume ℰ is a production economy satisfying 

(A1)-(A7). Then there exists a Walrasian equilibrium of ℰ. 

Linear Activity Analysis 



If we are modeling production, we not only have to pick utility functions but also 

production sets or production functions. A simple case is the so called 'linear 

activity model' of production. In this model, all production sets are convex cones 

spanned by finitely many rays. In particular, there is only one firm (this actually 

won't make any difference - see below). The firm has access to 𝑀 linear activities 

𝑎𝑚 ∈ ℳ ⊂ ℝ𝐿. It can operate each activity at some level 𝛾 ≥ 0. The production set 

𝑌 is the convex hull of these activities, 

𝑌 = {𝑦 ∈ ℝ𝐿: 𝑦 = ∑  

𝑀

𝑚=1

  𝛾𝑚𝑎𝑚  for some 𝛾 ∈ ℝ+
𝑀}. 

Our assumption of free disposal is satisfied if the vectors 

(−1,0,…0), (0, −1,0,… 0), … (0,… ,0,−1) 

are all in ℳ. Figure 11 shows the special case of 4 activities and 2 goods. There are 

two productive activities: activity 1 allows 2 units of good 2 to be converted into 1 

unit of good 1. Activity 2 allows 3 units of good 1 to be converted into 1 unit of good 

2. Also there are two "free disposal activities". Therefore: 

ℳ = {(1,−2), (−3,1), (0,−1), (−1,0)} 



 

Figure 11: Activity Analysis Model 

In the activity analysis model, given a price vector 𝑝, a profit maximizing 

production plan exists if and only if 𝑝 ⋅ 𝑎𝑚 ≤ 0 for all 𝑚 = 1,… ,𝑀. If 𝑝 ⋅ 𝑎𝑚 > 0 for 

some 𝑚 = 1,… ,𝑀, the firm could choose 𝛾𝑚 → ∞ and make infinite profits. Also, if 

𝑝 ⋅ 𝑎𝑚 < 0 for some 𝑚 it is clear that the optimal 𝛾𝑚 = 0. 

This simple observation already tells us a lot about what kind of prices could 

potentially be equilibrium prices. Indeed, in many cases the equilibrium prices will 

just be determined by the zero-profit conditions, with utility maximization and 

market clearing pinning down the levels at which the activities are operated. 

An important thing to note is that if all production sets are of this simple linear 

form, firms do not play a role at all. As there will never be any equilibrium profits, 

what matters is just the aggregate production set. Whether we interpret each 

activity as a separate firm or we assume that one firm owns all the activities, or 

even that several firms operate different sets of overlapping activities makes no 

difference as long as we stay in our competitive paradigm.  3 This constant returns 



property is shared by the Cobb-Douglas production model that you have probably 

seen a lot in macroeconomics. 

An Example with Numbers 

To make things really concrete, let's consider an example with numbers. Suppose 

there are two agents and three goods. The agents have identical utility functions: 

𝑢𝑖(𝑥) = log (𝑥1) + log (𝑥2) + log (𝑥3) 

Endowments are 𝑒1 = (1,2,3) and 𝑒2 = (2,2,2). Suppose that there are two 

activities 𝑎1 = (2,−1,0.5) and 𝑎2 = (0,1,−1). 

What does the Walrasian equilibrium look like? Let's normalize 𝑝3 = 1. Now, if 

activity 2 is used in equilibrium, it must be the case that (by zero profit) 𝑝2 = 1. 

Similarly, if activity 1 is used in equilibrium, then 𝑝1 = 0.25. These prices are upper 

bounds on the equilibrium prices if these activities are not used in equilibrium. 

Let's see if we can find an equilibrium where both activities are used. Given prices 

𝑝 = (0.25,1,1), we solve the utiliy maximization problem for agent 𝑖. This gives us: 

1

𝑝1𝑥1
𝑖
=

1

𝑝2𝑥2
𝑖
=

1

𝑝3𝑥3
𝑖
  and  ∑  

𝑙

𝑝𝑙𝑥𝑙
𝑖 = ∑ 

𝑙

𝑝𝑙𝑒𝑙
𝑖 

Plugging in our price vector and the endowments, we have: 

4

𝑥1
𝑖
=

1

𝑥2
𝑖
=

1

𝑥3
𝑖
  and  

1

4
𝑥1

𝑖 + 𝑥2
𝑖 + 𝑥3

𝑖 = 𝑤𝑖 

 where 𝑤1 = 5.25 and 𝑤2 = 4.5. Therefore: 

𝑥1 = (7,1.75,1.75) 𝑥2 = (6,1.5,1.5) 

Therefore aggregate demand is (13,3.25,3.25). The aggregate endowments are 

(3,4,5), so the only way we can have market clearing is if the aggregate production 



is (10,−0.75,−1.75). This isn't a problem. The firm will simply operate activity 1 at 

a level 𝛾1 = 5 and operate activity 2 at a level 𝛾2 = 4.25. 

General Equilibrium with Uncertainty 
 

Our goal in this last section is to introduce time and uncertainty into the basic 

model. 

Introducing uncertainty allows a role for financial markets. 

We first discuss the basic framework, then look at a model with financial markets 

and a single consumption good. In the context of this simple model, we consider 

what it means for there to be an absence of arbitrage possibilities. We also look at 

why the first welfare theorem can fail if there are too few financial securities. 

Modeling Uncertainty and Time 
 

Among the many simplifications of the Arrow-Debreu model we have studied so 

far is that it's essentially a static model with no uncertainty at all. 

Ideally, we'd like to include both time and uncertainty into our model of 

competitive trade. 

Introducing time into the model isn't too hard. A tomato in summer is a different 

good than a tomato in winter. So perhaps we can just think about a commodity as 

being identified not only by its physical characteristics but also by its date. 

Uncertainty seems more complicated, but a brilliant modelling innovation of 

Arrow (1953) comes to the rescue. 

Arrow's insight was to introduce "states of the world" along the lines of Savage's 

decision theory. 

A state of the world is a complete description of a date-event. 



Unlike in Savage, however, we're going to assume that these states aren't 

personal and subjective 

Instead everyone somehow agrees on the possible states (there could be a 

lot). 

People don't have to agree on the probabilities of the states occurring, 

though that is often assumed. 

We now think about the general model as having a finite number of time periods.  

In each period there is a set of possible states and there can be uncertainty about 

what state will arise at date 𝑡 + 1 - the probabilities can even depend on what state 

was realized at date 𝑡. 

With these ideas in mind, we can think about re-interpreting our Walrasian model 

as follows. 

We model uncertainty as an event tree with 𝑆 nodes, 𝜉 ∈ Ξ. We denote a node's 

predessor by 𝜉− and its set of successors by Υ(𝜉). 

At each 𝑡 we summarize the nodes in this period in a set 𝒩𝑡. 

We denote the root node by 0.  

 

 



 

Figure 12: An Event Tree 

There are 𝐿 commodities at every node so the total number of commodities is 𝑆𝐿.  

There are 𝐼 agents. Each has an endowment 𝑒𝑖 ∈ ℝ++
𝑆𝐿 . 

Agent 𝑖 's consumption set is ℝ+
𝑆𝐿 and his utility function is 𝑢𝑖: ℝ+

𝑆𝐿 → ℝ. 

The utility function may or may not satisfy the von-Neumann Morgenstern axioms. 

Define a Walrasian equilibrium exactly as before: a set of prices and resulting 

allocation such that (i) all agents maximize utility given prices; and (ii) markets 

clear. 

The idea here is that all trades take place at date zero and there is no retrading in 

later periods. 



Under our earlier assumptions on preferences, a Walrasian equilibrium exists, and 

the Welfare Theorems hold. 

This is the model in chapter 7 of Debreu's Theory of Value. As Debreu puts it: "A 

contract for the transfer of commodities now specifies, in addition to its physical 

properties, its location and date, an event on the occurrence of which the transfer 

is conditional. This new definition of commodity allows one to obtain a 

theory of uncertainty free from any probability concepts and formally 

identical to the theory of certainty." 

This is quite elegant, but as Arrow originally pointed out, it seems unrealistic that 

all these contingent trades would occur at date 0. 

Instead, what tends to happen is that there are financial securities that are traded 

on exchanges and some of these securities pay out contingent on certain events 

(e.g. hurricane insurance pays out contingent on there being a hurricane; stocks 

pay dividends contingent on company performance). 

Arrow cleverly reformulated the model as follows. 

Assume at each node 𝜉 there are spot markets for the 𝐿 commodities at that node.  

Assume that these commodities have prices 𝑝(𝜉). 

At node 0 there are now (𝑆 − 1) Arrow securities (i.e. one for each future node), 

where an Arrow security 𝜉 pays one unit of good one at node 𝜉. 

An equilibrium is now defined as utility maximization and market clearing at each 

node and in the 𝑆 − 1 markets for Arrow securities at date 0. 

The amazing result is that even though there are only 𝑆 − 1 securities in the 

economy, the Arrow-Debreu allocation obtains. 

The result isn't even that hard to prove, though we won't do it now. 



The next question that arose (in a paper by Radner, 1972) was the following: what 

happens if there are securities that pay out in future contingencies (like stock in 

different companies), but not a complete set of Arrow-Debreu securities. 

This makes for arguably a more realistic model of actual securities markets. 

This question has given rise to a large "incomplete markets" literature in 

economics and finance. 

One of the interesting results from this literature is that without a complete 

set of A-D securities, the first welfare theorem generally won't hold. 

So there is potentially room for government intervention and policy 

questions become interesting. 

A Simple Finance Model 

In this section we introduce and study what is just about the simplest general 

equilibrium model with uncertainty. We assume there are two periods and in each 

state of the world there is just one consumption good. We normalize the spot price 

in each period to be equal to one. 

We assume there are 𝑆 + 1 states of the economy. At time 𝑡 = 0 the economy is in 

state 𝑠 = 0; at time 𝑡 = 1 the economy can be in one of 𝑆 possible states. In each 

state 𝑠 = 0,… , 𝑆 there is a single perishable consumption good. 

Each agent 𝑖 ∈ ℐ has an initial endowment 𝑒𝑖 = (𝑒0
𝑖 ,… , 𝑒𝑆

𝑖) ∈ ℝ++
𝑆+1 and has a utility 

function 𝑢𝑖: ℝ+
𝑆+1 → ℝ over consumption bundles 𝑐𝑖 = (𝑐0

𝑖 , … , 𝑐𝑆
𝑖) ∈ ℝ+

𝑆+1. We 

asume each agent's utility function satisfies the standard assumptions - it's 

increasing, continuous and strictly concave. Also, let's define 𝑥‾ = (𝑥1, … , 𝑥𝑆) as the 

𝑡 = 1 part of the vector 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑆). The aggregate endowment is 𝑒 = ∑𝑖∈ℐ  𝑒
𝑖. 

There are 𝐽 assets or securities. Each asset 𝑗 pays dividends at date 𝑡 = 1 which we 

denote by 𝑑𝑗 ∈ ℝ𝑆. The price of asset 𝑗 at time 𝑡 = 0 is 𝑞𝑗. Without loss of generality 



we assume that these assets are in zero net supply (if we wanted the assets to be 

stock in some firm, there would be positive net supply, but then we could put the 

dividends into agent's endowments and be back to zero net supply). We collect all 

assets' dividends in the matrix: 

𝐴 = (𝑑1, … , 𝑑𝐽) ∈ ℝ𝑆×𝐽 

At time 𝑡 = 0, each agent 𝑖 chooses a portfolio 𝛼𝑖 ∈ ℝ𝐽, where 𝛼𝑗
𝑖 is the amount of 

asset 𝑗 held by agent 𝑖. An agent's portfolio uniquely defines his wealth at each time 

one state, and hence his consumption (recall that prices are normalized to one at 

each date one state): 𝑥‾𝑖 = 𝑒𝑖 + 𝐴𝛼𝑖  and 𝑥0
𝑖 = 𝑒0

𝑖 − 𝛼𝑖 ⋅ 𝑞. The net demand of each 

agent 𝑥‾𝑖 − 𝑒𝑖 belongs to the span of the asset payoff matrix 𝐴 : 

⟨𝐴⟩ = {𝑧 ∈ ℝ𝑆: ∃𝛼 ∈ ℝ𝐽 s.t. 𝑧 = 𝐴𝛼} 

A finance economy is hence a triple: ℰ = ((𝑢𝑖 , 𝑒𝑖)
𝑖∈ℐ

, 𝐴). Without loss of generality, 

we can assume that rank (𝐴) = 𝐽 so there are no redundant assets. With redundant 

assets, an arbitrage argument would imply that the price of some assets would be 

uniquely determined by the price of other assets, regardless of preferences. We say 

that markets are incomplete if 𝐽 < 𝑆. 

Asset prices are said to be arbitrage-free if it is not possible to achieve a positive 

income stream in all states by trading at the going prices, i.e. if there is no position 

𝛼 ∈ ℝ𝐽 with 𝑞𝛼 ≤ 0 and 𝐴𝛼 ≥ 0 with one inequality being strict. Here 𝑞𝛼 is the cost 

of portfolio 𝛼 at date 0 and 𝐴𝛼 is the vector of payoffs at different date one staes. 

No arbitrage means you can't guarantee positive future income tomorrow without 

making a positive investment today. 

If agents have strictly increasing utility functions, asset prices must preclude 

arbitrage or there would be a real problem with utility maximization. The absence 

of arbitrage is thus often seen the fundamental concept in finance (more so than 

equilibrium). Many important concepts (such as Black-Scholes option pricing) rely 

solely on arbitrage arguments. 



Theorem 15 An asset price vector 𝑞 ∈ ℝ𝐽 precludes arbitrage if and only if there exists 

a state price vector 𝜋 ∈ ℝ++
𝑆  such that 𝑞 = 𝜋′ ⋅ 𝐴. 

Proof. Let 𝑀 = {(−𝑞𝛼,𝐴𝛼): 𝛼 ∈ ℝ𝐽} be the marketed subspace of ℝ𝑆+1. That is, 

(−𝑥0, 𝑥‾) ∈ 𝑀 means that by spending 𝑥0 at date 0 , an agent can ensure the vector 

of returns 𝑥‾ at date one. There is no arbitrage if and only if ℝ+
𝑆+1 ∩ 𝑀 = {0}. If 

(𝑥0, 𝑥‾) ∈ 𝑀 and 𝑥0 ≥ 0, 𝑥‾ ≥ 0 with a strict inequality (so (𝑥0, 𝑥‾) ∈ ℝ+
𝑆+1 − {0}, it 

would be possible to start with zero wealth, consume 𝑥0 today and consume 𝑥‾ 

tomorrow - i.e. arbitrage would be possible. 

For one direction of the proof, suppose there exists a strictly positive state price 

vector 𝜋 ∈ ℝ++
𝑆  such that 𝑞 = 𝜋′𝐴. We show that this means there is no arbitrage. 

If there were also a vector 𝑥 ∈ ℝ+
𝑆+1 ∩ 𝑀 with 𝑥 ≠ 0, then because 𝑥 ∈ ℝ+

𝑆+1 and 𝜋 ∈

ℝ++
𝑆 , we have (1, 𝜋) ⋅ 𝑥 > 0. But by the fact that 𝑥 ∈ 𝑀 and 𝑞 = 𝜋′𝐴, we also have 

(1, 𝜋) ⋅ 𝑥 = −𝑞𝛼 + 𝑞𝛼 = 0, a contradiction. Hence, a strictly positive state price 

vector implies no arbitrage. 

For the converse direction, suppose no arbitrage: ℝ+
𝑆+1 ∩ 𝑀 = {0}. We use the 

separating hyperplane to derive a supporting state price vector. Note that 𝑀 and 

ℝ+
𝑆+1 are both convex sets whose intersection includes only the point {0}. The SHT 

asserts the existence of a vector 𝜇 ≠ 0 such that 𝜇 ⋅ 𝑥 < 𝜇 ⋅ 𝑧 for all 𝑥 ∈ 𝑀 and all 

non-zero 𝑧 ∈ ℝ+
𝑆+1.  4 

Now, by the definition of 𝑀, it must be the case that if 𝑥 ∈ 𝑀 then −𝑥 ∈ 𝑀,so we 

must have 𝜇 ⋅ 𝑥 = 0 for all 𝑥 ∈ 𝑀. Therefore 𝜇 ⋅ 𝑧 > 0. The latter implies that 𝜇 ≫ 0 

(if 𝜇𝑙 ≤ 0 for some 𝑙, we could find 𝑧 ∈ ℝ+
𝑆+1 − {0} with 𝑧𝑙 > 0 and 𝑧𝑘 = 0 leading to 

the contradiction 𝜇 ⋅ 𝑧 ≤ 0). Therefore −𝜇1𝑞 + (𝜇2, … , 𝜇𝑆+1)𝐴 = 0 and 𝜋𝑠 = 𝜇𝑠+1/𝜇1 

will give us a state price vector (note that to form 𝜋 we just normalize the prices −𝜇 

has the right relative prices). 

Q.E.D. 



A lot of asset pricing theory has to do with finding the right state-price vector 𝜋. Its 

existence is ensured by the absence of arbitrage, but often little can be said about 

it in general models.  5 

Definition 9 A financial markets equilibrium for a finance economy ℰ is a collection 

of portfolios 𝛼∗ = (𝛼1∗, … , 𝛼𝐼∗) ∈ ℝ𝐼𝐽, individual consumptions (𝑥𝑖)
𝑖∈ℐ

 and prices 

𝑞∗ ∈ ℝ𝐽 such that: 

Agents maximize utility: 

(𝑥𝑖 , 𝛼𝑖∗) ∈  arg max
𝛼𝑖∈ℝ𝐽,𝑐𝑖∈ℝ+

𝑆+1
 𝑢𝑖(𝑐𝑖)

 s.t. 𝑐𝑖 = 𝑒𝑖 + (
−𝑞∗′

𝐴
)𝛼𝑖

 

Markets clear: 

∑ 

𝑖∈ℐ

𝛼𝑖∗ = 0 

Clearly any equilibrium price vector must preclude arbitrage for the maximization 

problem to have a well-defined solution. Indeed, we can infer state prices from 

 the agents' first order conditions: 

𝜋𝑠 =
∂𝑢𝑖(𝑥𝑖)

∂𝑥𝑠
𝑖

 

If 𝐽 = 𝑆 (remember the assets dividends are assumed to be linearly independent), 

then a financial markets equilibrium is equivalent to a Walrasian equilibrium. 

There will be a unique state-price vector 𝜋 ∈ ℝ++
𝑆  such that 𝑞 = 𝜋′𝐴. This will be an 

equilibrium price vector for a Walrasian economy; the resulting allocations are the 

same in the two equilibria. 



More interesting is the case where 𝐽 < 𝑆 so that markets are incomplete. Under our 

assumptions, a financial markets equilibrium will still exist, but the equilibrium 

allocation may not be efficient. To see why, let's look at an example. 

Suppose there are two states and there is a single bond that pays 1 in each state: 

𝑑 = (1,1)′. Suppose there are two agents with endowments: 

𝑒1 = (1,2,1)

𝑒2 = (1,1,2)
 

and that both agents have identical utility: 

𝑢𝑖(𝑥0, 𝑥1, 𝑥2) = log 𝑥0 +
1

2
log 𝑥1 +

1

2
log 𝑥2 

You can check as an exercise that the unique equilibrium will have no trade in the 

bond so everyone will just consume there endowment. This allocation, however, is 

Pareto dominated by the feasible allocation 𝑥1 = 𝑥2 = (1,1.5,1.5). 

The first welfare theorem fails because the set of existing securities does not allow 

the agents to suitably insure themselves against adverse states. There is still as 

sense, however, in which equilibrium exhausts the gains from trade. 

Definition 10 Given endowments (𝑒𝑖)
𝑖∈ℐ

 and assets 𝐴, an allocation (𝑥𝑖)
𝑖∈ℐ

 is 

constrained efficient if ∑𝑖∈ℐ  (𝑥
𝑖 − 𝑒𝑖) ≤ 0, 𝑥𝑖 − 𝑒𝑖 ∈ ⟨𝐴⟩ for all 𝑖 ∈ ℐ and there exists 

no alternative allocation (�̂�𝑖)
𝑖∈ℐ

 that Pareto dominates (𝑥𝑖)
𝑖∈ℐ

 and also satisfies 

∑𝑖∈ℐ  (�̂�
𝑖 − 𝑒𝑖) ≤ 0 and �̂�𝑖 − 𝑒𝑖 ∈ ⟨𝐴⟩ for all 𝑖 ∈ ℐ. If you're interested, you can try 

proving the following weaker welfare theorem: 

Theorem 16 If utility functions are strictly increasing, a financial markets 

equilibrium is constrained efficient. 
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