
Expected Utility Theory 
These are Alexander Wolitzky’s MIT notes (14.121), slightly altered by Pedro 
Hemsley (IE-UFRJ) 

 

Course so far introduced basic theory of choice and utility, extended to DM and 
producer theory. 

Last topic extends in another direction: choice under uncertainty 

Choice under Uncertainty 
 

All choices made under some kind of uncertainty. 

Sometimes useful to ignore uncertainty, focus on ultimate choices. 

Other times, must model uncertainty explicitly. 

Examples: 

• Insurance markets. 

• Financial markets. 

• Game theory. 

Overview 
 

Impose extra assumptions on basic choice model of Lectures 1-2. 

Rather than choosing outcome directly, decision-maker chooses 
uncertain prospect (or lottery). 

A lottery is a probability distribution over outcomes. 

Leads to von Neumann-Morgenstern expected utility model. 

Consequences and Lotteries 
 

Two basic elements of expected utility theory: consequences (or outcomes) and 
lotteries. 



Consequences 
 

Finite set 𝐶 of consequences. 

Consequences are what the decision-maker ultimately cares about. 

Example: "I have a car accident, my insurance company covers most of the costs, 
but I have to pay a $500 deductible." 

Decision-maker (DM) does not choose consequences directly. 

Lotteries 
 

DM chooses a lottery, 𝑝. 

Lotteries are probability distributions over consequences: 

𝑝: 𝐶 → [0,1] with ∑𝑐∈𝐶  𝑝(𝑐) = 1. 

Set of all lotteries is denoted by 𝑃. 

Example: "A gold-level health insurance plan, which covers all kinds of diseases, 
but has a $500 deductible." 

Makes sense because DM assumed to rank health insurance plans only insofar as 
lead to different probability distributions over consequences. 

Choice 
 

Decision-maker makes choices from set of alternatives 𝑋. 

What's set of alternatives here, 𝐶 or 𝑃 ? 

Answer: 𝑃 

DM does not choose consequences directly, but instead chooses 
lotteries. 

Assume decision-maker has a rational preference relation ≿ on 𝑃. 

Natural to assume this? 

Convex Combinations of Lotteries 



Given two lotteries 𝑝 and 𝑝′, the convex combination 𝛼𝑝 + (1 − 𝛼)𝑝′ is the lottery 
defined by 

(𝛼𝑝 + (1 − 𝛼)𝑝′)(𝑐) = 𝛼𝑝(𝑐) + (1 − 𝛼)𝑝′(𝑐) for all 𝑐 ∈ 𝐶. 

One way to generate it: 

• First, randomize between 𝑝 and 𝑝′ with weights 𝛼 and 1 − 𝛼. 

• Second, choose a consequence according to whichever lottery came up. 

Such a probability distribution over lotteries is called a compound lottery. 

In expected utility theory, no distinction between simple and compound lotteries: 
simple lottery 𝛼𝑝 + (1 − 𝛼)𝑝′ and above compound lottery give same distribution 
over consequences, so identified with same element of 𝑷. 

So, no problem if DM doesn’t know exactly the distribution for something. We’ll 
come back to this. 

The Set 𝑃 

As 𝛼𝑝 + (1 − 𝛼)𝑝′ is also a lottery, 𝑃 is convex. 

𝑃 is also closed and bounded (why?). 

⟹ 𝑃 is a compact subset of ℝ𝑛, where 𝑛 = |𝐶|. 

Whenever ≿ is rational and continuous, can be represented by continuous utility 
function 𝑈:𝑃 → ℝ : 

𝑝 ≿ 𝑞 ⟺ 𝑈(𝑝) ≥ 𝑈(𝑞) 

We’re just applying it to lotteries because that’s what the DM chooses now. 

Intuitively, want more than this. 

Want not only that DM has utility function over lotteries, but also that 
somehow related to "utility" over consequences. 

Only care about lotteries insofar as affect distribution over consequences, so 
preferences over lotteries should have something to do with "preferences" over 
consequences. 

Expected Utility 

 



Best we could hope for is representation by utility function of following form: 

Definition: a utility function 𝑈: 𝑃 → ℝ has an expected utility form if there 
exists a function 𝑢: 𝐶 → ℝ such that 

𝑈(𝑝) =∑  

𝑐∈𝐶

𝑝(𝑐)𝑢(𝑐) for all 𝑝 ∈ 𝑃. 

In this case, the function 𝑈 is called an expected utility function, and the 
function 𝑢 is call a von Neumann-Morgenstern utility function. 

If preferences over lotteries happen to have an expected utility representation, it's 
as if DM has a "utility function" over consequences (and chooses among lotteries 
so as to maximize expected "utility over consequences"). 

Remarks 

𝑈(𝑝) =∑  

𝑐∈𝐶

𝑝(𝑐)𝑢(𝑐) 

Expected utility function 𝑈:𝑃 → ℝ represents preferences ≿ on 𝑃 just as we had 
before 

𝑈: 𝑃 → ℝ is an example of a standard utility function. 

von Neumann-Morgenstern utility function 𝑢: 𝐶 → ℝ is not a standard utility 
function. 

Can't have a "real" utility function on consequences, as DM never 
chooses among consequences. 

If preferences over lotteries happen to have an expected utility representation, it's 
as if DM has a "utility function" over consequences. 

This "utility function" over consequences is the von Neumann-Morgenstern utility 
function. 

Example 

Suppose hipster restaurant doesn't let you order steak or chicken, but only 
probability distributions over steak and chicken. 

How should you assess menu item ( 𝑝 (steak), 𝑝 (chicken) ) ? 

One way: ask yourself how much you'd like to eat steak, 𝑢(steak), and chicken, 
𝑢(chicken), and evaluate according to 



𝑝( steak ) ⋅ 𝑢( steak ) + 𝑝( chicken) ⋅ 𝑢( chicken ) 

If this is what you'd do, then your preferences have an expected utility 
representation. 

Suppose instead you choose whichever menu item has 𝑝 (steak) closest to 
1

2
. 

Your preferences are rational, so they have a utility representation. 

But they do not have an expected utility representation – we’ll see this. 

Property of EU: Linearity in Probabilities 

 

Theorem 
 

If 𝑈: 𝑃 → ℝ is an expected utility function, then 

𝑈(𝛼𝑝 + (1 − 𝛼)𝑝′) = 𝛼𝑈(𝑝) + (1 − 𝛼)𝑈(𝑝′) 

In fact, a utility function 𝑈:𝑃 → ℝ has an expected utility form iff this equation 
holds for all 𝑝, 𝑝′, and 𝛼 ∈ [0,1]. 

Proof: appendix. 

Property of EU: Invariant to Affine Transformations 

Suppose 𝑈:𝑃 → ℝ is an expected utility function representing preferences ≿. 

Any increasing transformation of 𝑈 also represents ≿. 

Not all increasing transformations of 𝑈 have expected utility form. 

Theorem 
Suppose 𝑈:𝑃 → ℝ is an expected utility function representing preferences ≿. Then 
𝑉:𝑃 → ℝ is also an expected utility function representing ≿ iff there exist 𝑎, 𝑏 > 0 
such that 

𝑉(𝑝) = 𝑎 + 𝑏𝑈(𝑝) for all 𝑝 ∈ 𝑃. 

If this is so, we also have 𝑉(𝑝) = ∑𝑐∈𝐶  𝑝(𝑐)𝑣(𝑐) for all 𝑝 ∈ 𝑃, where 

𝑣(𝑐) = 𝑎 + 𝑏𝑢(𝑐) for all 𝑐 ∈ 𝐶 

Proof: appendix. 



What Preferences have an Expected Utility Representation? 

Preferences must be rational to have any kind of utility representation. 

Preferences on a compact and convex set must be continuous to have a continuous 
utility representation. 

Besides rationality and continuity, what's needed to ensure that 
preferences have an expected utility representation? 

The Independence Axiom 

Definition 
A preference relation ≿ satisfies independence if, for every 

𝑝, 𝑞, 𝑟 ∈ 𝑃 and 𝛼 ∈ (0,1), 

𝑝 ≿ 𝑞 ⟺ 𝛼𝑝 + (1 − 𝛼)𝑟 ≿ 𝛼𝑞 + (1 − 𝛼)𝑟. 

Can interpret as form of "dynamic consistency." 

Doesn’t need to hold for consequences. 

Back to Example 

Suppose choose lottery with 𝑝(steak) closest to 
1

2
. 

Let 𝑝 = (
1

2
,
1

2
) , 𝑞 = (0,1), 𝑟 = (1,0), and 𝛼 =

1

2
. 

Then 

𝑝 = (
1

2
,
1

2
) ≻ (0,1) = 𝑞 

but 

𝛼𝑞 + (1 − 𝛼)𝑟 = (
1

2
,
1

2
) ≻ (

3

4
,
1

4
) = 𝛼𝑝 + (1 − 𝛼)𝑟 

Does not satisfy independence. 

Expected Utility: Characterization 

Theorem (Expected Utility Theorem) 
 



A preference relation ≿ has an expected utility representation iff it satisfies 
rationality, continuity, and independence. 

Intuition: both having expected utility form and satisfying independence boil down 
to having straight, parallel indifference curves. 

Subjective Expected Utility Theory 

So far, probabilities are objective. 

In reality, uncertainty is usually subjective. 

Subjective expected utility theory (Savage, 1954): under assumptions roughly 
similar to ones form this lecture, preferences have an expected utility 
representation where both the utilities over consequences and the subjective 
probabilities themselves are revealed by decision-maker's choices. 

Thus, expected utility theory applies even when the probabilities are not 
objectively given. 

(To learn more, a good starting point is Kreps (1988), "Notes on the Theory of 
Choice." ) 

Again, no problem if DM doesn’t know the exact distribution. 

The same holds in general equilibrium: allows for different individual priors. 

One may go beyond and assume DM has some rule to deal with set of priors – e.g., 
DM may assume that nature will choose the worst possible prior, conditional on 
his optimal choice, leading to a mini-max structure that deals with fear of 
misspecification and relates to sub-rational behavior. 

See nice discussion in Hansen and Sargent (2000) and a critique by Sims (AER 
2001). 

 

  

http://www.tomsargent.com/research/wanting.pdf


Attitudes toward Risk 
Money Lotteries 
 

Turn now to special case of choice under uncertainty where outcomes are 
measured in dollars. 

Set of consequences 𝐶 is subset of ℝ. 

A lottery is a cumulative distribution function 𝐹 on ℝ. 

(Now we use 𝐹 instead of 𝑝) 

Assume preferences have expected utility representation: 

𝑈(𝐹) = 𝐸𝐹[𝑢(𝑥)] = ∫  𝑢(𝑥)𝑓(𝑥)𝑑𝑥 

More generally, we could write ∫  𝑢(𝑥)𝑑𝐹(𝑥). 

This is useful if we do not know whether a density 𝑓 exists. 

We’ll assume it does and make 
𝑑𝐹(𝑥)

𝑑𝑥
⁄ = 𝑓(𝑥), so that 𝑑𝐹(𝑥) = 𝑓(𝑥)𝑑𝑥, leading 

to our representation above. 

(But everything holds for a general 𝐹(𝑥).) 

Assume 𝑢 increasing, differentiable. 

Question: how do properties of von Neumann-Morgenstern utility function 𝑢 
relate to decision-maker's attitude toward risk? 

Expected Value vs. Expected Utility 

Expected value of lottery 𝐹 is 

𝐸𝐹[𝑥] = ∫𝑥𝑓(𝑥)𝑑𝑥  

Expected utility of lottery 𝐹 is 

𝐸𝐹[𝑢(𝑥)] = ∫  𝑢(𝑥)𝑓(𝑥)𝑑𝑥 

Can learn about DM's risk attitude by comparing 𝐸𝐹[𝑢(𝑥)] and 𝑢(𝐸𝐹[𝑥]). 



Risk Attitude: Definitions 

Definition 
A decision-maker is risk-averse if she always prefers the sure wealth level 𝐸𝐹[𝑥] 
to the lottery 𝐹 : that is, 

∫ 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 ≤ 𝑢 (∫  𝑥𝑓(𝑥)𝑑𝑥)  for all 𝐹. 

A decision-maker is strictly risk-averse if the inequality is strict for all non-
degenerate lotteries 𝐹. 

A decision-maker is risk-neutral if she is always indifferent: 

∫ 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 = 𝑢 (∫  𝑥𝑓(𝑥)𝑑𝑥)  for all 𝐹. 

A decision-maker is risk-loving if she always prefers the lottery: 

∫ 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 ≥ 𝑢 (∫  𝑥𝑓(𝑥)𝑑𝑥)  for all 𝐹. 

Risk Aversion and Concavity 

Statement that ∫ 𝑢(𝑥)𝑑𝐹(𝑥) ≤ 𝑢(∫ 𝑥𝑑𝐹(𝑥)) for all 𝐹 is called Jensen's inequality. 

Fact: Jensen's inequality holds iff 𝑢 is concave. 

This implies: 

Theorem 
 

A decision-maker is (strictly) risk-averse if and only if 𝑢 is (strictly) concave. 

A decision-maker is risk-neutral if and only if 𝑢 is linear. 

A decision-maker is (strictly) risk-loving if and only if 𝑢 is (strictly) convex. 

Certainty Equivalents 

Can also define risk-aversion using certainty equivalents. 

Definition 
The certainty equivalent of a lottery 𝐹 is the sure wealth level that yields the same 
expected utility as 𝐹 : that is, 



𝑢[𝐶𝐸(𝐹, 𝑢)] = ∫  𝑢(𝑥)𝑓(𝑥)𝑑𝑥 

That is, 

𝐶𝐸(𝐹, 𝑢) = 𝑢−1 (∫  𝑢(𝑥)𝑑𝐹(𝑥)). 

Theorem 
A decision-maker is risk-averse iff 𝐶𝐸(𝐹, 𝑢) ≤ 𝐸𝐹(𝑥) for all 𝐹. 

A decision-maker is risk-neutral iff 𝐶𝐸(𝐹, 𝑢) = 𝐸𝐹(𝑥) for all 𝐹. 

A decision-maker is risk-loving iff 𝐶𝐸(𝐹, 𝑢) ≥ 𝐸𝐹(𝑥) for all 𝐹. 

Quantifying Risk Attitude 

We know what it means for a DM to be risk-averse. 

What does it mean for one DM to be more risk-averse than another? 

Two possibilities: 

1. 𝑢 is more risk-averse than 𝑣 if, for every 𝐹, 𝐶𝐸(𝐹, 𝑢) ≤ 𝐶𝐸(𝐹, 𝑣). 

2. 𝑢 is more risk-averse than 𝑣 if 𝑢 is "more concave" than 𝑣, in that 𝑢 = 𝑔 ∘ 𝑣 
for some increasing, concave 𝑔. 

One more, based on local curvature of utility function: 𝑢 is more-risk averse than 
𝑣 if, for every 𝑥, 

−
𝑢′′(𝑥)

𝑢′(𝑥)
≥ −

𝑣′′(𝑥)

𝑣′(𝑥)
 

𝐴(𝑥, 𝑢) = −
𝑢′′(𝑥)

𝑢′(𝑥)
 is called the Arrow-Pratt coefficient of absolute risk-aversion. 

An Equivalence 

Theorem 
The following are equivalent: 

1. For every 𝐹, 𝐶𝐸(𝐹, 𝑢) ≤ 𝐶𝐸(𝐹, 𝑣). 

2. There exists an increasing, concave function 𝑔 such that 𝑢 = 𝑔 ∘ 𝑣. 

3. For every 𝑥, 𝐴(𝑥, 𝑢) ≥ 𝐴(𝑥, 𝑣). 



Risk Attitude and Wealth Levels 

How does risk attitude vary with wealth? 

Natural to assume that a richer individual is more willing to bear risk: whenever a 
poorer individual is willing to accept a risky gamble, so is a richer individual. 

Captured by decreasing absolute risk-aversion: 

Definition 
 

A von Neumann-Morenstern utility function 𝑢 exhibits decreasing (constant, 
increasing) absolute risk-aversion if 𝐴(𝑥, 𝑢) is decreasing (constant, increasing) in 
𝑥. 

Risk Attitude and Wealth Levels 

Theorem 
 

Suppose 𝑢 exhibits decreasing absolute risk-aversion. 

If the decision-maker accepts some gamble at a lower wealth level, she also accepts 
it at any higher wealth level: 

that is, for any lottery 𝐹(𝑥), if 

𝐸𝐹[𝑢(𝑤 + 𝑥)] ≥ 𝑢(𝑤), 

then, for any 𝑤′ > 𝑤, 

𝐸𝐹[𝑢(𝑤
′ + 𝑥)] ≥ 𝑢(𝑤′). 

Multiplicative Gambles 

What about gambles that multiply wealth, like choosing how risky a stock portfolio 
to hold? Are richer individuals also more willing to bear multiplicative risk? 
Depends on increasing/decreasing relative risk-aversion: 

𝑅(𝑥, 𝑢) = −
𝑢′′(𝑥)

𝑢′(𝑥)
𝑥.  

Theorem 
Suppose u exhibits decreasing relative risk-aversion. 



If the decision-maker accepts some multiplicative gamble at a lower wealth level, 
she also accepts it at any higher wealth level: that is, for any lottery 𝐹(𝑡), if 

𝐸𝐹[𝑢(𝑡𝑤)] ≥ 𝑢(𝑤), 

then, for any 𝑤′ > 𝑤, 

Relative Risk-Aversion vs. Absolute Risk-Aversion 

𝑅(𝑥) = 𝑥𝐴(𝑥) 

decreasing relative risk-aversion ⟹ decreasing absolute risk-aversion 

increasing absolute risk-aversion ⟹ increasing relative risk-aversion 

Ex. decreasing relative risk-aversion ⟹ more willing to gamble 1% of wealth as get 
richer. 

So certainly more willing to gamble a fixed amount of money. 

Application: Insurance 

Risk-averse agent with wealth 𝑤, faces probability 𝑝 of incurring monetary loss 𝐿. 

Can insure against the loss by buying a policy that pays out 𝑎 if the loss occurs. 

Policy that pays out a costs qa. 

How much insurance should she buy? 

Agent's Problem 
max
𝑎
  𝑝𝑢(𝑤 − 𝑞𝑎 − 𝐿 + 𝑎) + (1 − 𝑝)𝑢(𝑤 − 𝑞𝑎) 

𝑢 concave ⟹ concave problem, so FOC is necessary and sufficient. 

FOC: 

𝑝(1 − 𝑞)𝑢′(𝑤 − 𝑞𝑎 − 𝐿 + 𝑎) = (1 − 𝑝)𝑞𝑢′(𝑤 − 𝑞𝑎) 

Equate marginal benefit of extra dollar in each state. 

Actuarily Fair Prices 
Insurance is actuarily fair if expected payout qa equals cost of insurance 𝑝𝑎 : that 
is, 𝑝 = 𝑞. 

With acturarily fair insurance, FOC becomes 



𝑢′(𝑤 − 𝑞𝑎 − 𝐿 + 𝑎) = 𝑢′(𝑤 − 𝑞𝑎) 

Solution: 𝑎 = 𝐿 

A risk-averse DM facing actuarily fair prices will always fully insure. 

Actuarily Unfair Prices 
What if insurance company makes a profit, so 𝑞 > 𝑝 ? 

Rearrange FOC as 

𝑢′(𝑤 − 𝑞𝑎 − 𝐿 + 𝑎)

𝑢′(𝑤 − 𝑞𝑎)
=
(1 − 𝑝)𝑞

𝑝(1 − 𝑞)
> 1 

Solution: 𝑎 < 𝐿 

A risk-averse DM facing actuarily unfair prices will never fully insure. 

Intuition: 𝑢 approximately linear for small risks, so not worth giving up expected 
value to insure away last little bit of variance. 

Comparative Statics 
max
𝑎
 𝑝𝑢(𝑤 − 𝑞𝑎 − 𝐿 + 𝑎) + (1 − 𝑝)𝑢(𝑤 − 𝑞𝑎) 

Bigger loss ⟹ buy more insurance ( 𝑎∗ increasing in 𝐿 ) Follows from Topkis' 
theorem. 

If agent has decreasing absolute risk-aversion, then she buys less insurance as she 
gets richer. 

Prove it as an exercise! 

Application: Portfolio Choice 
 

Risk-averse agent with wealth 𝑤 has to invest in a safe asset and a risky asset. 

Safe asset pays certain return 𝑟. 

Risky asset pays random return 𝑧, with cdf 𝐹. 

Agent's problem 

max
𝑎∈[0,𝑤]

 ∫  𝑢(𝑎𝑧 + (𝑤 − 𝑎)𝑟)𝑑𝐹(𝑧) 

First-order condition 



∫ (𝑧 − 𝑟)𝑢′(𝑎𝑧 + (𝑤 − 𝑎)𝑟)𝑑𝐹(𝑧) = 0 

Risk-Neutral Benchmark 
 

Suppose 𝑢′(𝑥) = 𝛼𝑥 for some 𝛼 > 0. 

Then 

𝑈(𝑎) = ∫  𝛼(𝑎𝑧 + (𝑤 − 𝑎)𝑟)𝑑𝐹(𝑧) 

so 

𝑈′(𝑎) = 𝛼(𝐸[𝑧] − 𝑟) 

Solution: set 𝑎 = 𝑤 if 𝐸[𝑧] > 𝑟, set 𝑎 = 0 if 𝐸[𝑧] < 𝑟. 

Risk-neutral investor puts all wealth in the asset with the highest rate of return. 

𝑟 > 𝐸[𝑧] Benchmark 

𝑈′(0) = ∫  (𝑧 − 𝑟)𝑢′(𝑤)𝑑𝐹 = (𝐸[𝑧] − 𝑟)𝑢′(𝑤) 

If safe asset has higher rate of return, then even risk-averse investor puts all wealth 
in the safe asset. 

More Interesting Case 
 

What if agent is risk-averse, but risky asset has higher expected return? 

𝑈′(0) = (𝐸[𝑧] − 𝑟)𝑢′(𝑤) > 0 

If risky asset has higher rate of return, then risk-averse investor always puts some 
wealth in the risky asset. 

Comparative Statics 
 

Does a less risk-averse agent always invest more in the risky asset? 

Sufficient condition for agent 𝑣 to invest more than agent 𝑢 : 



∫ (𝑧 − 𝑟)𝑢′(𝑎𝑧 + (𝑤 − 𝑎)𝑟)𝑑𝐹 = 0

⟹ ∫  (𝑧 − 𝑟)𝑣′(𝑎𝑧 + (𝑤 − 𝑎)𝑟)𝑑𝐹 ≥ 0
 

𝑢 more risk-averse ⟹ 𝑣 = ℎ ∘ 𝑢 for some increasing, convex ℎ. Inequality equals 

∫ (𝑧 − 𝑟)ℎ′(𝑢(𝑎𝑧 + (𝑤 − 𝑎)𝑟))𝑢′(𝑎𝑧 + (𝑤 − 𝑎)𝑟)𝑑𝐹 ≥ 0 

ℎ′(⋅) positive and increasing in 𝑧 

⟹ multiplying by ℎ′(⋅) puts more weight on positive (𝑧 > 𝑟) terms, less weight on 
negative terms. 

A less risk-averse agent always invests more in the risky=asset.  

  



Comparing Risky Prospects 
Risky Prospects 
 

We’ve studied decision-maker's subjective attitude toward risk. 

Now: study objective properties of risky prospects (lotteries, gambles) themselves, 
relate to individual decision-making. 

Topics: 

• First-Order Stochastic Dominance 

• Second-Order Stochastic Dominance 

• (Optional) Some recent research extending these concepts 

First-Order Stochastic Dominance 
 

When is one lottery unambiguously better than another? 

Natural definition: 𝐹 dominates 𝐺 if, for every amount of money 𝑥, 𝐹 is more likely 
to yield at least 𝑥 dollars than 𝐺 is. 

Definition 
 

For any lotteries 𝐹 and 𝐺 over ℝ, 𝐹 first-order stochastically dominates (FOSD) 𝐺 
if 

𝐹(𝑥) ≤ 𝐺(𝑥) for all 𝑥. 

FOSD and Choice 
 

Main theorem relating FOSD to decision-making: 

Theorem 
𝐹 FOSD 𝐺 iff every decision-maker with a non-decreasing utility function prefers 
𝐹 to 𝐺. 

That is, the following are equivalent: 

1. 𝐹(𝑥) ≤ 𝐺(𝑥) for all 𝑥. 



2. ∫ 𝑢(𝑥)𝑑𝐹 ≥ ∫ 𝑢(𝑥)𝑑𝐺 for every non-decreasing function 𝑢:ℝ → ℝ. 

Proof: 

Preferred by Everyone => FOSD 
If 𝐹 does not FOSD 𝐺, then there's some amount of money 𝑥∗ such that 𝐺 is more 
likely to give at least 𝑥∗ than 𝐹 is. 

Consider a DM who only cares about getting at least 𝑥∗ dollars. 

She will prefer 𝐺. 

FOSD => Preferred by Everyone 
Main idea: 𝐹 FOSD 𝐺 ⟹ 𝐹 gives more money "realization-by-realization." 

Suppose draw 𝑥 according to 𝐺, but then instead give decision-maker 

𝑦(𝑥) = 𝐹−1(𝐺(𝑥)) 

Then: 

1. 𝑦(𝑥) ≥ 𝑥 for all 𝑥, and 

2. 𝑦 is distributed according to 𝐹. 

⟹ paying decision-maker according to 𝐹 just like first paying according to 𝐺, then 
sometimes giving more money. 

Any decision-maker who likes money likes this. 

QED. 

Second-Order Stochastic Dominance 
 

Q : When is one lottery better than another for any decision-maker? 

A: First-Order Stochastic Dominance. 

Q: When is one lottery better than another for any risk-averse decision-maker? 

A: Second-Order Stochastic Dominance. 

Definition 
 

𝐹 second-order stochastically dominates (SOSD) 𝐺 iff every decision-maker with a 
non-decreasing and concave utility function prefers 𝐹 to 𝐺 : that is, 



∫  𝑢(𝑥)𝑑𝐹 ≥ ∫  𝑢(𝑥)𝑑𝐺 

for every non-decreasing and concave function 𝑢:ℝ → ℝ. 

SOSD is a weaker property than FOSD. 

SOSD for Distributions with Same Mean 
 

If 𝐹 and 𝐺 have same mean, when will any risk-averse decision-maker prefer 𝐹 ? 

When is 𝐹 "unambiguously less risky" than 𝐺 ? 

Mean-Preserving Spreads 
 

𝐺 is a mean-preserving spread of 𝐹 if 𝐺 can be obtained by first drawing a 
realization from 𝐹 and then adding noise. 

Definition 
 

𝐺 is a mean-preserving spread of 𝐹 iff there exist random variables 𝑥, 𝑦, and 𝜀 such 
that 

𝑦 = 𝑥 + 𝜀, 

𝑥 is distributed according to 𝐹, 𝑦 is distributed according to 𝐺, and 𝐸[𝜀 ∣ 𝑥] = 0 for 
all 𝑥. 

Formulation in terms of cdfs: 

∫  
𝑥

−∞

𝐺(𝑦)𝑑𝑦 ≥ ∫  
𝑥

−∞

𝐹(𝑦)𝑑𝑦 for all 𝑥. 

Characterization of SOSD for CDFs with Same Mean 
 

Theorem 
 

Assume that ∫ 𝑥𝑑𝐹 = ∫ 𝑥𝑑𝐺. Then the following are equivalent: 

1. F SOSD 𝐺. 

2. 𝐺 is a mean-preserving spread of 𝐹. 



3. ∫
−∞

𝑥
 𝐺(𝑦)𝑑𝑦 ≥ ∫

−∞

𝑥
 𝐹(𝑦)𝑑𝑦 for all 𝑥. 

General Characterization of SOSD 
Theorem 
The following are equivalent: 

1. 𝐹 𝑆𝑂𝑆𝐷 𝐺. 

2. ∫
−∞

𝑥
 𝐺(𝑦)𝑑𝑦 ≥ ∫

−∞

𝑥
 𝐹(𝑦)𝑑𝑦 for all 𝑥. 

3. There exist random variables 𝑥, 𝑦, 𝑧, and 𝜀 such that 

𝑦 = 𝑥 + 𝑧 + 𝜀, 

𝑥 is distributed according to 𝐹, 𝑦 is distributed according to 𝐺, 𝑧 is always non-
positive, and 𝐸[𝜀 ∣ 𝑥] = 0 for all 𝑥. 

4. There exists a cdf 𝐻 such that 𝐹 FOSD 𝐻 and 𝐺 is a mean-preserving spread 
of 𝐻. 

Complete Dominance Orderings [Optional] 
 

FOSD and SOSD are partial orders on lotteries: 

"most distributions" are not ranked by FOSD or SOSD. 

To some extent, nothing to be done: 

If 𝐹 doesn't FOSD 𝐺, some decision-maker prefers 𝐺. 

If 𝐹 doesn't SOSD 𝐺, some risk-averse decision-maker prefers 𝐺. 

However, recent series of papers points out that if view 𝐹 and 𝐺 as lotteries over 
monetary gains and losses rather than final wealth levels, and only require that no 
decision-maker prefers 𝐺 to 𝐹 for all wealth levels, do get a complete order on 
lotteries (and index of lottery's "riskiness"). 

Acceptance Dominance 
Consider decision-maker with wealth 𝑤, has to accept or reject a gamble 𝐹 over 
gains/losses 𝑥. 

Accept iff 

𝐸𝐹[𝑢(𝑤 + 𝑥)] ≥ 𝑢(𝑤). 



Definition 

𝐹 acceptance dominates 𝐺 if, whenever 𝐹 is rejected by decision-maker with 
concave utility function 𝑢 and wealth 𝑤, so is G. 

That is, for all 𝑢 concave and 𝑤 > 0, 

𝐸𝐹[𝑢(𝑤 + 𝑥)] ≤ 𝑢(𝑤)

𝐸𝐺[𝑢(𝑤 + 𝑥)] ≤ 𝑢(𝑤).
 

Acceptance Dominance and FOSD/SOSD 
 

𝐹 SOSD 𝐺 

⟹ 𝐸𝐹[𝑢(𝑤 + 𝑥)] ≥ 𝐸𝐺[𝑢(𝑤 + 𝑥)] for all concave 𝑢 and wealth 𝑤 

⟹ 𝐹 acceptance dominates 𝐺. 

If 𝐸𝐹[𝑥] > 0 but 𝑥 can take on both positive and negative values, can show that 𝐹 
acceptance dominates lottery that doubles all gains and losses. 

Acceptance dominance refines SOSD. 

But still very incomplete. 

Turns out can get complete order from something like: acceptance dominance at 
all wealth levels, or for all concave utility functions. 

Wealth Uniform Dominance 
Definition 
𝐹 wealth-uniformly dominates 𝐺 if, whenever 𝐹 is rejected by decision-maker with 
concave utility function 𝑢 at every wealth level 𝑤, so is 𝐺. 

That is, for all 𝑢 ∈ 𝒰∗, 

𝐸𝐹[𝑢(𝑤 + 𝑥)] ≤ 𝑢(𝑤) for all 𝑤 > 0

𝐸𝐺[𝑢(𝑤 + 𝑥)] ≤ 𝑢(𝑤) for all 𝑤 > 0.
 

Utility Uniform Dominance 
 

Definition 
 

𝐹 utility-uniformly dominates 𝐺 if, whenever 𝐹 is rejected at wealth level 𝑤 by a 
decision-maker with any utility function 𝑢 ∈ 𝒰∗, so is 𝐺. 



That is, for all 𝑤 > 0, 

𝐸𝐹[𝑢(𝑤 + 𝑥)] ≤ 𝑢(𝑤) for all 𝑢 ∈ 𝒰∗

𝐸𝐺[𝑢(𝑤 + 𝑥)] ≤ 𝑢(𝑤) for all 𝑢 ∈ 𝒰∗.
 

Uniform Dominance: Results 
 

Hart (2011): 

• Wealth-uniform dominance and utility-uniform dominance are complete 
orders. 

• Comparison of two lotteries in these orders boils down to comparison of 
simple measures of the "riskiness" of the lotteries. 

• Measure for wealth-uniform dominance: critical level of risk-aversion above 
which decision maker with constant absolute risk-aversion rejects the 
lottery. 

• Measure for utility-uniform dominance: critical level of wealth below which 
decision-maker with log utility rejects the lottery. 

  



Appendix: some proofs 
 

𝑈 has expected utility form ⟺ 𝑈 linear in probabilities 
 

Theorem 

𝑈: 𝑃 → ℝ has an expected utility form if and only if 

𝑈(𝛼𝑝 + (1 − 𝛼)𝑝′) = 𝛼𝑈(𝑝) + (1 − 𝛼)𝑈(𝑝′) 

holds for all 𝑝, 𝑝′, and 𝛼 ∈ [0,1]. 

 

Notice: this is MWG proposition 6B1. It uses the following notation: 𝑈(∑𝛼𝑘𝑝𝑘) =
∑𝛼𝑘𝑈(𝑝𝑘), just substituting 𝑝 for 𝐿 (which stands for ‘lottery’). 

 

Proof 

Without loss of generality, we will assume only two consequences, 𝑐1 and 𝑐2. 

Hence any lottery 𝑝 may be written as 𝑝 = (𝑝1, 𝑝2), in which 𝑝1 = 𝑃𝑟𝑜𝑏(𝑐1) and 
𝑝2 = 𝑃𝑟𝑜𝑏(𝑐2). 

All arguments below hold unchanged for 𝑝 = (𝑝1, … , 𝑝𝑛), that is, for 𝑛 
consequences 𝑐1,…,𝑐𝑛. This extension is shown in red below; you may simply 
ignore it in your first reading. 

The arguments below also hold for 𝑐 ∈ [𝑐1, 𝑐𝑛] ∈ ℝ, but the math is not exactly the 
same. 

 

Necessity: 𝑈 linear in probabilities ⇒ 𝑈 has expected utility form 
 

Write lottery 𝑝 = (𝑝1, 𝑝2) as a convex combination of degenerate lotteries (𝐶1, 𝐶2): 

𝑝 = 𝑝1𝐶1 + 𝑝2𝐶2 +⋯+ 𝑝𝑛𝐶𝑛 

That is, 𝐶1 = (1,0), meaning that consequence 1 (𝑐1) happens with probability 1, 
and 𝐶2 = (0,1), meaning that consequence 2 (𝑐2) happens with probability 1. The 



equation above is simply 𝑝 = (𝑝1, 𝑝2) = (𝑝1, 0) + (0, 𝑝2) = 𝑝1 ⋅ (1,0) + 𝑝2 ⋅ (0,1) =
𝑝1𝐶1 + 𝑝2𝐶2. 

Then: 

𝑈(𝑝) = 𝑈(𝑝1𝐶1 + 𝑝2𝐶2 +⋯+ 𝑝𝑛𝐶𝑛) = 𝑝1𝑈(𝐶1) + 𝑝2𝑈(𝐶2) + ⋯+ 𝑝𝑛𝑈(𝐶𝑛) 

The second equality follows from our assumption: 𝑈 is linear in probabilities. 

But 𝑈(𝐶1) is the utility from a degenerate lottery, that is, it’s simply the vNM utility 

of consequence 𝑐1: 𝑈(𝐶1) = 𝑢(𝑐1). 

Remember our notation: big U is for DM’s actual utility; small u is form DM’s vNM 
utility. Big C denotes a lottery; small c denotes a consequence. 

The last equation may be rewritten as: 

𝑈(𝑝) = 𝑈(𝑝1𝐶1 + 𝑝2𝐶2 +⋯+ 𝑝𝑛𝐶𝑛) = 𝑝1𝑈(𝐶1) + 𝑝2𝑈(𝐶2) + ⋯+ 𝑝𝑛𝑈(𝐶𝑛)
= 𝑝1𝑢(𝑐1) + 𝑝2𝑢(𝑐2) +⋯+ 𝑝𝑛𝑢(𝑐𝑛) 

In short: 

𝑈(𝑝) = 𝑝1𝑢(𝑐1) + 𝑝2𝑢(𝑐2) +⋯+ 𝑝𝑛𝑢(𝑐𝑛) 

This is exactly the expected utility property, concluding the proof. 

 

Sufficiency: 𝑈 has expected utility form ⇒ 𝑈 linear in probabilities  
 

Consider a compound lottery: 

(𝑝1, 𝑝2, … , 𝑝𝑘  ; 𝛼1, 𝛼2, … , 𝛼𝑘) 

Notice that now we have 𝑝1 instead of 𝑝1; and 𝑝2 instead of 𝑝2. Superscripts refer 
to consequences; subscripts refer to specific lotteries. 

That is, 𝑝1 and 𝑝2 are different lotteries, and each one is a vector assigning 
probabilities for each of the two possible consequences 𝑐1 and 𝑐2: 

𝑝𝑖 = (𝑝𝑖
1, 𝑝𝑖

2, … , 𝑝𝑖
𝑛) 

For 𝑖 = 1, … , 𝑘. That is, we have 𝑘 lotteries, and each one is chosen with probability 
𝛼𝑖 in our compound lottery. 

We will allow 𝑘 to be generic. If you want, just take 𝑘 = 2 in the following 
computations – again, it’s without loss of generality, but be careful not to confuse 
the number of consequences with the number of lotteries. 



Consider now the following (reduced) lottery: 

𝛼1𝑝1 + 𝛼2𝑝2 +⋯+ 𝛼𝑘𝑝𝑘 

Consider the utility of this lottery: 

𝑈(𝛼1𝑝1 + 𝛼2𝑝2 +⋯+ 𝛼𝑘𝑝𝑘) 

We may now use our assumption: 𝑈 has the expected utility form. That is, one may 
rewrite this utility as: 

𝑈(𝛼1𝑝1 + 𝛼2𝑝2 +⋯+ 𝛼𝑘𝑝𝑘) = 𝑢
1 ⋅ 𝑃𝑟𝑜𝑏(𝑢1) + 𝑢2 ⋅ 𝑃𝑟𝑜𝑏(𝑢2) + ⋯+ 𝑢𝑛 ⋅ 𝑃𝑟𝑜𝑏(𝑢𝑛) 

 

What are these 𝑢𝑖’s? We just need to know that there are some 𝑢𝑖’s that make this 
equation hold – our assumption guarantees this is the case. But we do have an 

interpretation for them: 𝑢𝑖 is just the vNM utility of consequence 𝑐𝑖. Analogously, 

𝑃𝑟𝑜𝑏(𝑢𝑖) is simply the probability of this consequence, computed from the 

compound lottery 𝛼1𝑝1 + 𝛼2𝑝2 +⋯+ 𝛼𝑘𝑝𝑘. 

This explains why we have subscripts on the LHS, but superscripts on the RHS. In 
the LHS, we have lotteries (that generate a compound lottery). On the RHS, we 
have consequences with vNM utilities 𝑢1, 𝑢2,…,𝑢𝑛. If you want, you may think of 
the lottery on the LHS as any given lottery 𝑝. 

Let’s develop this equation: 

𝑈(𝛼1𝑝1 + 𝛼2𝑝2 +⋯+ 𝛼𝑘𝑝𝑘) = 

𝑢1 ⋅ 𝑃𝑟𝑜𝑏(𝑢1) + 𝑢2 ⋅ 𝑃𝑟𝑜𝑏(𝑢2) = 

𝑢1 ⋅ (𝛼1𝑝1
1 + 𝛼2𝑝2

1 +⋯+ 𝛼𝑘𝑝𝑘
1)⏟                  

𝑃𝑟𝑜𝑏(𝑢1)

+ 𝑢2 ⋅ (𝛼1𝑝1
2 + 𝛼2𝑝2

2 +⋯+ 𝛼𝑘𝑝𝑘
2)⏟                  

𝑃𝑟𝑜𝑏(𝑢2)

+⋯+ 𝑢𝑛

⋅ (𝛼1𝑝1
𝑛 + 𝛼2𝑝2

𝑛 +⋯+ 𝛼𝑘𝑝𝑘
𝑛)⏟                  

𝑃𝑟𝑜𝑏(𝑢2)

= 

𝛼1 ⋅ (𝑢
1 ⋅ 𝑝1

1 + 𝑢2 ⋅ 𝑝1
2 +⋯+ 𝑢𝑛 ⋅ 𝑝1

𝑛)⏟                    
𝑈(𝑝1)

+ 𝛼2 ⋅ (𝑢
1 ⋅ 𝑝2

1 + 𝑢2 ⋅ 𝑝2
2 +⋯+ 𝑢𝑛 ⋅ 𝑝2

𝑛)⏟                    
𝑈(𝑝2)

+⋯

+ 𝛼𝑘 ⋅ (𝑢
1 ⋅ 𝑝𝑘

1 + 𝑢2 ⋅ 𝑝𝑘
2 +⋯+ 𝑢𝑛 ⋅ 𝑝𝑘

𝑛)⏟                    
𝑈(𝑝𝑘)

= 

𝛼1 ⋅ 𝑈(𝑝1) + 𝛼2 ⋅ 𝑈(𝑝2) +⋯+ 𝛼𝑘 ⋅ 𝑈(𝑝𝑘) 

From the second to the third line, we use the definition of 𝑃𝑟𝑜𝑏(𝑢1): it is simply 
the first coordinate of the vector 𝛼1𝑝1 + 𝛼2𝑝2 +⋯+ 𝛼𝑘𝑝𝑘, ie, the compound lottery. 
It is analogous for 𝑃𝑟𝑜𝑏(𝑢2) to 𝑃𝑟𝑜𝑏(𝑢𝑛). 



From the third to the fourth line: we use again our assumption: 𝑈 has the expected 
utility form. Hence we may write 𝑈(𝑝1) = 𝑢

1 ⋅ 𝑝1
1 + 𝑢2 ⋅ 𝑝1

2 +⋯+ 𝑢𝑛 ⋅ 𝑝1
𝑛. It is 

analogous for 𝑈(𝑝2) to 𝑈(𝑝𝑘). 

In short: 

𝑈(𝛼1𝑝1 + 𝛼2𝑝2 +⋯+ 𝛼𝑘𝑝𝑘) = 𝛼1 ⋅ 𝑈(𝑝1) + 𝛼2 ⋅ 𝑈(𝑝2) +⋯+ 𝛼𝑘 ⋅ 𝑈(𝑝𝑘) 

 

That is, 𝑈 is linear in probabilities, concluding the proof. 

QED. 

  



Expected utility form is preserved under positive affine 
transformations 
 

Theorem 

𝑈,𝑈 have expected utility form (and represent the same preferences) ⟺ there are 

𝛽 > 0, 𝛾 such that for all 𝑝, 𝑈(𝑝) = 𝛽𝑈(𝑝) + 𝛾. 

 

This is MWG proposition 6B2. 

 

Proof 

 

Choose 𝑝, 𝑝 such that for all lottery 𝑝, 𝑝 ≽ 𝑝 ≽ 𝑝. 

If 𝑝 ~ 𝑝, then all utility functions are constant, and the result follows immediately.  

Assume now 𝑝 ≻  𝑝. 

 

Sufficiency: If 𝑈 has expected utility form, then 𝑈̃(𝑝) = 𝛽𝑈(𝑝)+ 𝛾 also has expected utility 
form. 
 

Consider a compound lottery 𝛼1𝑝1 + 𝛼2𝑝2. That is, we have two lotteries (𝑝1 and 
𝑝2), and each is chosen with probability 𝛼1 and 𝛼2, respectively. 

Without loss of generality, we consider only two lotteries, but the argument is 
unchanged for 𝑘 lotteries. 

Compute the utility of this compound lottery under 𝑈: 

 

𝑈(𝛼1𝑝1 + 𝛼2𝑝2) = 

𝛽 ⋅ 𝑈(𝛼1𝑝1 + 𝛼2𝑝2) + 𝛾 = 

𝛽 ⋅ [𝛼1𝑈(𝑝1) + 𝛼2𝑈(𝑝2)] + 𝛾 = 

𝛼1𝛽 ⋅ 𝑈(𝑝1) + 𝛼2𝛽 ⋅ 𝑈(𝑝2) + [𝛼1𝛾 + 𝛼2𝛾]⏟        
=𝛾

= 

𝛼1 ⋅ [𝛽 ⋅ 𝑈(𝑝1) + 𝛾]⏟          
𝑈(𝑝1)

+ 𝛼2 ⋅ [𝛽 ⋅ 𝑈(𝑝2) + 𝛾]⏟          
𝑈(𝑝2)

= 

𝛼1 ⋅ 𝑈(𝑝1) + 𝛼2 ⋅ 𝑈(𝑝2) 

From the first to the second line: we use the definition 𝑈(𝑝) = 𝛽𝑈(𝑝) + 𝛾. 



 

From the second to the third line: we use the assumption that 𝑈 has the expected 
utility form: hence, 𝑈(𝛼1𝑝1 + 𝛼2𝑝2) = 𝛼1𝑈(𝑝1) + 𝛼2𝑈(𝑝2). 

 

From the third to the fourth line: we simply write 𝛾 = 𝛼1𝛾 + 𝛼2𝛾, which is true 
because 𝛼1 + 𝛼2 = 1 (it’s a probability distribution, so it must sum up to one). 

 

From the fourth to the fifth line: we factor out 𝛼1 and 𝛼2. 

 

In short: 

 

𝑈(𝛼1𝑝1 + 𝛼2𝑝2) = 𝛼1 ⋅ 𝑈(𝑝1) + 𝛼2 ⋅ 𝑈(𝑝2) 

 

That is, 𝑈 has the expected utility form, as we wanted to show. 

 

 

Necessity: 𝑈 and 𝑈̃ have the expected utility form (and represent the same preferences) 
implies that for some 𝛽 > 0, 𝛾, one has 𝑈̃(𝑝) = 𝛽𝑈(𝑝)+𝛾 
 

Fix a lottery 𝑝. 

 

Choose 𝜆𝑝 ∈ [0,1] such that: 

 

𝑈(𝑝) = 𝜆𝑝 ⋅ 𝑈(𝑝) + (1 − 𝜆𝑝) ⋅ 𝑈 (𝑝) 

 

This equation has two implications. 

 

First implication:  𝑝 ~ 𝜆𝑝𝑝 + (1 − 𝜆𝑝)𝑝 

This holds because we’re assuming 𝑈 has the expected utility form. The previous 
theorem states that if this is the case, then 𝑈 is linear in probabilities. Hence the 
RHS of this last equation may be rewritten as: 

𝜆𝑝 ⋅ 𝑈(𝑝) + (1 − 𝜆𝑝) ⋅ 𝑈 (𝑝) = 𝑈 (𝜆𝑝 ⋅ 𝑝 + (1 − 𝜆𝑝) ⋅ 𝑝) 



Hence 𝑈(𝑝) = 𝑈 (𝜆𝑝 ⋅ 𝑝 + (1 − 𝜆𝑝) ⋅ 𝑝). By definition of a utility function, the 

arguments on each side must be indifferent for the DM. 

 

 

Second implication: 

 

𝜆𝑝 =
𝑈(𝑝) − 𝑈 (𝑝)

𝑈(𝑝) − 𝑈 (𝑝)
 

 

This is just a rearrangement of the equation above. 

 

We know that 𝑈 is linear in probabilities (previous theorems) and represents the 
same preferences. Hence: 

 

𝑈(𝑝) = 𝜆𝑝 ⋅ 𝑈(𝑝) + (1 − 𝜆𝑝) ⋅ 𝑈 (𝑝) = 

𝜆𝑝 ⋅ [𝑈(𝑝) − 𝑈 (𝑝)] + 𝑈 (𝑝) = 

(
𝑈(𝑝) − 𝑈 (𝑝)

𝑈(𝑝) − 𝑈 (𝑝)
)

⏟          
𝜆𝑝

⋅ [𝑈(𝑝) − 𝑈 (𝑝)] + 𝑈 (𝑝) 

 

In short: 

 

𝑈(𝑝) = (
𝑈(𝑝) − 𝑈 (𝑝)

𝑈(𝑝) − 𝑈 (𝑝)
)

⏟          
𝜆𝑝

⋅ [𝑈(𝑝) − 𝑈 (𝑝)] + 𝑈 (𝑝) 

 

 

In this last expression, only 𝑈(𝑝) depends on 𝑝. All other terms are parameters. 
Rearrange this expression to get the following: 

 



𝑈(𝑝) = [
𝑈(𝑝) − 𝑈 (𝑝)

𝑈(𝑝) − 𝑈 (𝑝)
] ⋅ 𝑈(𝑝) + 𝑈 (𝑝) − 𝑈 (𝑝) ⋅ [

𝑈(𝑝) − 𝑈 (𝑝)

𝑈(𝑝) − 𝑈 (𝑝)
] 

 

Again: except 𝑈(𝑝), everything in this expression is a parameter, built from 

functions (𝑈 or 𝑈) evaluated at specific arguments (𝑝 or 𝑝). We can label them as 

we want. Let’s choose: 

 

𝛽 = [
𝑈(𝑝) − 𝑈 (𝑝)

𝑈(𝑝) − 𝑈 (𝑝)
] 

𝛾 = 𝑈 (𝑝) − 𝑈 (𝑝) ⋅ [
𝑈(𝑝) − 𝑈 (𝑝)

𝑈(𝑝) − 𝑈 (𝑝)
]

⏟          
𝛽

 

 

Then one has: 

 

𝑈(𝑝) = 𝛽𝑈(𝑝) + 𝛾 

 

This is what we wanted to show, concluding the proof. 

QED.  



Expected utility theorem 
 

 

Theorem 

(Rational and continuous) Preferences may be represented by an utility function 
with the expected utility form if and only if it respects the axiom of independence. 

 

Proof of Necessity: if ≽ respect the axiom of independence, then it may be represented by 
a utility function with the expected utility form. 

Assume there are lotteries 𝑝 and 𝑝 such that for all 𝑝, one has 𝑝 ≽ 𝑝 ≽ 𝑝. 

If 𝑝 ~ 𝑝, the result follows immediately: use a constant utility function. 

Assume from now on  𝑝 ≻ 𝑝. 

 

Step 1 
 

Take 𝛼 and 𝛽 such that 1 > 𝛽 > 𝛼 > 0. 

Write: 

𝑝 = 

𝛽𝑝 + (1 − 𝛽)𝑝 ≻ 

𝛽𝑝 + (1 − 𝛽)𝑝 = 

(𝛽 − 𝛼)𝑝 + 𝛼𝑝 + (1 − 𝛽)𝑝 ≻ 

(𝛽 − 𝛼)𝑝 + 𝛼𝑝 + (1 − 𝛽)𝑝 = 

𝛼𝑝 + (1 − 𝛼)𝑝 ≻ 

𝛼𝑝 + (1 − 𝛼)𝑝 = 

𝑝 

 

 

From the first to the second line: 𝑝 is the average of 𝑝 and 𝑝! 

From the second to the third line: we apply the axiom of independence. Observe 
that we keep 𝑝 in the first term of the sum, but substitute 𝑝 for 𝑝 in the second 

term. Since  𝑝 ≻  𝑝, the axiom of independence implies the strict preference. 



From the third to the fourth line: add and subtract 𝛼𝑝. 

From the fourth to the fifth line: again, we just substitute 𝑝 for 𝑝 in one term of the 

sum, and leave the rest unchanged. The axiom of independence applies again. 

From the fifth to the sixth line: we cancel out 𝛽𝑝. 

From the sixth to the seventh line: we repeat the argument of the 2nd to 3rd line, in 
reverse order. 

From the seventh to the eighth line: we repeat the argument of the 1st  to 2nd  line, 
in reverse order. 

Step 2: for all 𝑝, there is only one 𝜆𝑝 such that 𝜆𝑝𝑝 + (1 − 𝜆𝑝)𝑝 ~ 𝑝 

 

Existence follows from continuity. For any lottery 𝑝, define the sets: 

{𝜆 ∈ [0,1]: 𝜆𝑝 + (1 − 𝜆)𝑝 ≽ 𝑝} 

{𝜆 ∈ [0,1]: 𝜆𝑝 + (1 − 𝜆)𝑝 ≼ 𝑝} 

Continuity and completeness of ≽ imply that both sets are closed (why?). 
Moreover, any 𝜆 belongs to at least one of these sets. Since both sets are non-empty 
and [0,1] is connected, there must by some 𝜆 belonging to both (again: why?). 
Define it as 𝜆𝑝. 

Uniqueness follows from the previous step. If we were to slightly increase the value 
of 𝜆𝑝 (from 𝛼 to 𝛽 in the notation of the previous step), we would get a new lottery 

strictly preferred to the DM, breaking indifference. 

 

Step 3: 𝑈(𝑝) = 𝜆𝑝 is a utility function that represents ≽ 
 

Consider two lotteries 𝑝 and 𝑞. 

From steps 1 and 2, we may write: 

𝑝 ≽ 𝑞 ⟺ λp𝑝 + (1 − λp)𝑝 ≽ λq𝑝 + (1 − λq)𝑝 ⟺ λp ≽ λq 

 

The first ⟺ comes from step 2: use 𝑝 ~ λp𝑝 + (1 − λp)𝑝, and analogously 𝑞 ~λq𝑝 +

(1 − λq)𝑝. 

 



The second ⟺ comes from step 1, taking λp = 𝛽 and λq = 𝛼. 

 

In short, 𝑝 ≽ 𝑞 ⟺ λp ≽ λq. This is the definition of an utility function representing 

≽. 

 

Step 4: 𝑈(𝑝) = 𝜆𝑝 has the expected utility form. 

 

We have to show that for all 𝛼 ∈ [0,1], and for any lotteries 𝑝, 𝑝′, one has: 

𝑈[𝛼𝑝 + (1 − 𝛼)𝑝′] = 𝛼𝑈(𝑝) + (1 − 𝛼)𝑈(𝑝′) 

From step 2, we have: 

𝑝 ~ λp𝑝 + (1 − λp)𝑝 

𝑝′ ~ λp′𝑝 + (1 − λp′)𝑝 

From step 3, we have : 𝑈(𝑝) = 𝜆𝑝. These two relations become: 

 

𝑝 ~ 𝑈(𝑝)𝑝 + (1 − 𝑈(𝑝))𝑝 

𝑝′ ~ 𝑈(𝑝′)𝑝 + (1 − 𝑈(𝑝′))𝑝 

Take a convex combination 𝛼𝑝 + (1 − 𝛼)𝑝′. Given the two relations above, we have: 

𝛼𝑝 + (1 − 𝛼)𝑝′ ~ 𝛼 [𝑈(𝑝)𝑝 + (1 − 𝑈(𝑝))𝑝] + (1 − 𝛼) [𝑈(𝑝′)𝑝 + (1 − 𝑈(𝑝′))𝑝] 

~ [𝛼𝑈(𝑝) + (1 − 𝛼)𝑈(𝑝′)] ⋅ 𝑝 + [𝛼(1 − 𝑈(𝑝)) + (1 − 𝛼)(1 − 𝑈(𝑝′))] ⋅ 𝑝 

 

~ [𝛼𝑈(𝑝) + (1 − 𝛼)𝑈(𝑝′)] ⋅ 𝑝 + [1 − (𝛼𝑈(𝑝) + (1 − 𝛼)𝑈(𝑝′))] ⋅ 𝑝 

 

Notice now that the terms in red are the same. We may denote it by any letter – for 

example, 𝜆 (without the subscript to distinguish it from both 𝜆𝑝 and 𝜆𝑝′): 𝜆 =

𝛼𝑈(𝑝) + (1 − 𝛼)𝑈(𝑝′). 

The last line becomes: 

Factor out 𝑝 and 𝑝 



𝜆 ⋅ 𝑝 + [1 − 𝜆] ⋅ 𝑝 

In short, and without all the colors: 

𝛼𝑝 + (1 − 𝛼)𝑝′  ~ 𝜆 ⋅ 𝑝 + [1 − 𝜆] ⋅ 𝑝 

But this is the very definition of 𝜆𝑝 as defined in step 2, only applied to 𝛼𝑝 +
(1 − 𝛼)𝑝′. (If you want, you may write 𝜆𝛼𝑝+(1−𝛼)𝑝′ instead of 𝜆.) 

Or, using step 4, we have the more intuitive notation 𝜆 = 𝑈[𝛼𝑝 + (1 − 𝛼)𝑝′]. 

But we just defined 𝜆 = 𝛼𝑈(𝑝) + (1 − 𝛼)𝑈(𝑝′). 

Since these are the same 𝜆, one has: 

𝑈[𝛼𝑝 + (1 − 𝛼)𝑝′] = 𝛼𝑈(𝑝) + (1 − 𝛼)𝑈(𝑝′) 

That is, 𝑈 has the expected utility property, concluding the proof. 

QED. 
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