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Introduction 
 

• A basic problem in principal-agent relationships: how does the principal 
incentivize the agent to take the right action, given noisy information? 

• Setup: two players, 𝑃 and 𝐴 

• Technology: 𝑥(𝑒, 𝜃) = 𝑒 + 𝜃 

• 𝑥 is the outcome, 𝑒 is the agent's effort, 𝜃 is the "state of nature" or measurement 
error 

• Information: 𝑃 observes 𝑥, but not 𝑒 or 𝜃. A observes 𝑒 and 𝑥 (and hence can infer 
𝜃 ) 

• 𝑥 is "verifiable/contractible": this means it's mutually observed, and moreover 
the players could show the result to a court, hence can write a contract based on it 

• 𝑒 is private to 𝐴 

• (Note: you could have a variable that is mutually observed but nonverifiable!) 

• Preferences: 𝑃 is risk neutral: 𝑢!(𝑥, 𝑠) = 𝑥 − 𝑠, where 𝑠 is payment to the agent 

• 𝐴 is risk-averse: 𝑢"(𝑠, 𝑒) = 𝑢(𝑠) − 𝑐(𝑒), where 𝑢 is concave and 𝑐 is convex 

• (Note: could also have 𝑢" = 𝑢[𝑠 − 𝑐(𝑒)] if the cost of effort was monetary) 

• To compute an efficient allocation, solve: 

• The solution to the problem is a contract 𝑠(𝑥), which specifies payment based on 
outcome 

• Timing: 

• First, 𝑃 offers a contract 𝑠(𝑥) to 𝐴; 𝐴 can accept or reject, leading to outside 
option payoffs (note 𝑃 has all the bargaining power) 



• Second, if 𝐴 accepts, 𝐴 chooses 𝑒 

• Third, Nature chooses 𝜃 

• Fourth, 𝑥 is revealed to both agents and 𝑃 pays 𝑠(𝑥) to 𝐴 (note there is no 
commitment problem) - Note on moral hazard and adverse selection: 

• Old paradigm was: MH is the case with hidden action, no hidden info; AS is the 
opposite 

• We now understand it better 

• The crucial distinction: MH arises when info is symmetric at the time of 
contracting, AS arises when info is asymmetric at the time of contracting 

• E.g.: if 𝐴 had a choice to exert effort before meeting 𝑃, and this is private and 
affects our problem, it is AS with hidden action 

Possible formulations: 
 

• State space (as we have done it): think of the outcome as 𝑥(𝑒, 𝜃), where 𝜃 ∼ 𝐺 for 
some distribution. This is explicit about there being a state 

• Conditional distribution (pioneered by Mirrlees): think of the outcome as having 
a conditional distribution 𝐹(𝑥 ∣ 𝑒). This is equivalent to the first version, if we 
take 𝐹(𝑥# ∣ 𝑒) = 𝑃(𝑥(𝑒, 𝜃) ≤ 𝑥# ∣ 𝑒) = 𝑃(𝜃 ≤ 𝑥$(𝑥#)%& ∣ 𝑒) = 𝐺(𝑥$(𝑥#)%&) 

• Equivalently, think that the agent is just directly choosing a distribution 

• Again, although mathematically equivalent, the second formulation makes you 
more naturally think of enlightening examples 

• E.g., this case: two actions (two distributions), 𝑒' < 𝑒( 

• Costs 𝑐' = 0 < 𝑐( 

• 𝐹( ≻ 𝐹' in the FOSD sense 

• Note: the way we have framed it, principal offers contract 𝑠(⋅), then 𝐴 chooses 𝑒), 
generating 𝐹$ and some expected utilities 

• However, more natural to solve it this way: imagine the principal chooses a 
preferred action 𝑒∗ by 𝐴, then designs a contract that guarantees 𝐴 will choose 𝑒∗ 
(i.e., 𝑒∗ is incentive-compatible (IC) given 𝑠(⋅) ) 

• Formally, 𝑃 solves: 

max)(⋅),$  ∫/  (𝑥 − 𝑠(𝑥))𝑓(𝑥 ∣ 𝑒)dx 



s.t. ∫/  𝑢D𝑠(𝑥)E𝑓( 𝑥 ∣ 𝑒 )dx − 𝑐(𝑒) ≥ ∫ / 	𝑢D𝑠(𝑥)E𝑓( 𝑥 ∣ 𝑒
0 )dx  − 𝑐(𝑒0)			∀𝑒0 

I 	 𝑢(𝑠(𝑥))𝑓(𝑥 ∣ 𝑒)dx − 𝑐(𝑒) ≥ 𝑢‾" 

• More generally, we could write 𝑑F1(𝑥) instead of 𝑓(𝑥 ∣ 𝑒)dx for distributions 
without a well-defined density. Not relevant in these notes. 

• 𝑓( , 𝑓' don't even have to be proper densities for this to work (they can have point 
masses) but they must have the same support 

• Why? If they had different support, you could make perfect inference from some 
outcomes - We want to pick 𝑠(𝑥), i.e., a value of 𝑠 for each 𝑥 

• The second constraint (individual rationality, IR) assumes 𝐴 has some outside 
option paying 𝑢‾", so 𝑃 's contract must pay at least that much 

• Notice that is an optimization problem (for the agent) inside an optimization 
problem (for the principal). 

The First Best Problem, or: what’s the optimal risk distribution? 
 

• Before we solve the problem, notice that the solution involves distributing risk 
between the risk (from the exogenous shock 𝜃) and the agent. 

• The principal may bear all risk (constant payment to the agent: 𝑠(𝑥) is constant in 
𝑥), or may transfer some risk to the agent (𝑠(𝑥) varies with 𝑥). 

• What’s the optimal allocation of risk? To find out, solve the Pareto problem: 

𝑀𝑎𝑥	
)(/),1

 I(𝑥 − 𝑠(𝑥))f(𝑥 ∣ 𝑒)dx	 

s.t. ∫/𝑢(𝑠(𝑥))𝑓(𝑥 ∣ 𝑒)dx − 𝑐(𝑒) ≥ 𝑢‾" 

 

• This is the usual way to find Pareto efficient allocations: maximize the utility of 
one individual subject to a lower bound (𝑢‾") on the utility of the other individual. 
(We can pick either one to be maximized.) 

• But this is simply the principal’s problem without the IC constraint – that is, it’s 
the principal’s problem without moral hazard: he can observe the agent’s effort. 

• We’ll come back to the solution of this problem later, but this will hold generally: 
we find the first-best contract simply assuming away the informational problem, 
and excluding any restrictions that it imposes. 



The Second Best contract, or: what contract the principal will 
offer? 

 

• We can solve this with a two-step approach: 

• First, for a given 𝑒, what 𝑠(𝑥) is optimal to implement it? Let 𝐵(𝑒) be 𝑃 's utility 
under the best possible contract that implements 𝑒 

• (Note: an optimal contract never has randomized 𝑠 because 𝑃 is risk-neutral and 
𝐴 is risk-averse. Randomization is always suboptimal, since for each 𝑥 there is a 
unique optimum (due to the concavity of 𝑈 )) 

• Second: what 𝑒 is optimal? Find max$  𝐵(𝑒). 

• Going back to our problem with 2 actions: if we want to implement 𝑒', just take 
𝑠'(𝑥) constant and equal to 𝑠#, such that 𝑢(𝑠#) = 𝑢‾" 

• To implement 𝑒(, the contract must satisfy IC: 

I𝑢(𝑠(𝑥))f(𝑥 ∣ 𝑒()dx	 − 𝑐( ≥ I 	 𝑢(𝑠(𝑥))f(𝑥 ∣ 𝑒')dx 

• Using Lagrange multipliers, we have to solve 

	max
)(/)

 I(𝑥 − 𝑠(𝑥))f(𝑥 ∣ 𝑒()dx	

	+𝜇 SI𝑢(𝑠(𝑥))f(𝑥 ∣ 𝑒()dx	 − 𝑐( −I𝑢(𝑠(𝑥))f(𝑥 ∣ 𝑒')dx	T

	+𝜆 SI𝑢(𝑠(𝑥))f(𝑥 ∣ 𝑒()dx	 − 𝑐( − 𝑢‾"T

 

• This looks ugly, but since we are maximizing over all contracts 𝑠(𝑥), we can 
effectively maximize point by point (pick the best 𝑠(𝑥) for each 𝑥 ). That is, we can 
ignore the integrals. 

• (To convince yourself this is the case, write a simple version with two outcomes: 
𝑥 = 𝑆 or 𝑥 = 𝐹: Success or Failure. If the agent chooses 𝑒(, then 𝑃𝑟𝑜𝑏(𝑥 = 𝑆) =
2
3\ , otherwise 𝑃𝑟𝑜𝑏(𝑥 = 𝑆) = 1

2\ . You’ll find a structure 𝐺(𝑠2, 𝑠3) = 𝐺&(𝑠2) +
𝐺4(𝑠3).) 

• This gives the FOC: 
−1 × 𝑓((𝑥) + 𝜇𝑢0(𝑠(𝑥))𝑓((𝑥) − 𝜇𝑢0(𝑠(𝑥))𝑓'(𝑥) + 𝜆𝑢0(𝑠(𝑥))𝑓((𝑥) = 0 

(note we derive with respect to 𝑠, not 𝑥 ) 

Divide all terms by 𝑢0(𝑠(𝑥))𝑓((𝑥) and reorganize a bit to get: 

1
𝑢0(𝑠(𝑥))

= 𝜆 + 𝜇 ⋅ S1 −
𝑓'(𝑥)
𝑓((𝑥)

T 



• Reminder: We are studying a moral hazard problem with two actions: 

	max
)(/)

 I(𝑥 − 𝑠(𝑥))f(𝑥 ∣ 𝑒()dx	

	+𝜇 SI𝑢(𝑠(𝑥))f(𝑥 ∣ 𝑒()dx	 − 𝑐( −I𝑢(𝑠(𝑥))f(𝑥 ∣ 𝑒')dx	T

	+𝜆 SI𝑢(𝑠(𝑥))f(𝑥 ∣ 𝑒()dx	 − 𝑐( − 𝑢‾"T

 

• if we wanted to implement 𝑒( 

• Can do a change of variables and directly pick 𝑢(𝑠(𝑥)) : let 𝜙(𝑥) = 𝑢(𝑠(𝑥)), so 
that 𝑢%&(𝜙(𝑥)) = 𝑠(𝑥), then we can alternatively solve 

max
5(⋅)

  I(𝑥 − 𝑢%&(𝜙(𝑥)))𝑓((𝑥)𝑑𝑥

 s.t. I𝜙(𝑥)𝑓((𝑥)𝑑𝑥 − 𝑐( ≥ I𝜙(𝑥)𝑓'(𝑥)𝑑𝑥

I𝜙(𝑥)𝑓((𝑥)𝑑𝑥 − 𝑐( ≥ 𝑈‾"

 

• Conceptually, this is a simpler problem because the constraints are now linear in 
our choice variables 

• We obtain a Langrangian with multipliers 𝜇 for the IC constraint and 𝜆 for the IR 
constraint 

• Note: if IR is not binding, 𝑃 can always do better by reducing 𝜙(𝑥) uniformly for 
all 𝑥 (does not affect IR), hence IR is always binding and 𝜆 > 0 

• Note: built into our statement that 𝑃 maximizes his utility subject to 𝐼𝐶 and 𝐼𝑅, is 
the assumption that if the optimal 𝑒 is implemented with a program that leaves 𝐴 
indifferent with another action 𝑒0, he will pick whichever one is better for 𝑃 

• But we could frame it the other way, and maximize 𝐴 's utility subject to P's 
outside option or a market condition, and we would get the same set of results. 
Both programs return points on the possibility frontier of (𝐸𝑢", 𝐸𝑢!) 

• Let's interpret the resulting FOC: 

1
𝑢0(𝑠(𝑥))

= 𝜆 + 𝜇 ⋅ S1 −
𝑓'(𝑥)
𝑓((𝑥)

T 

How does it compare to the first best? 
 

• If there was no incentive (informational) problem, the optimal solution would 
just involve &

6!()(/))
= 𝜆, as in a risk sharing problem. This is the first-best 

contract. 



• In the first-best, payment 𝑠(𝑥) is constant: 𝜆 is constant in the outcome 𝑥, hence 
&

6!()(/))
 is also constant, hence 𝑢0(𝑠(𝑥)) is constant, hence 𝑠(𝑥) is constant. 

• This is interpreted as perfect insurance to the agent: 

• The first-best allocation of risk involves perfect insurance to the agent because he 
is risk averse while the principal is risk neutral: it is optimal to transfer all risk 
from someone who dislikes risk to someone who is indifferent to it. 

• However, the second-best contract involves imperfect insurance to the agent due 
to the moral hazard distortion term 𝜇 ⋅ e1 − 7"(/)

7#(/)
f, which is not constant in the 

outcome 𝑥. 

• The FOC tells us to what extent the risk-sharing incentive is distorted by the need 
to incentivize 𝐴: perfect insurance to the agent (constant wage) always induces 
the lowest (cheapest) level of effort to the agent. 

• Moral: tension in this model is between incentives and mitigating the cost of 𝐴 's 
risk aversion. That is, incentives x insurance. 

• This may be generalized for a risk-averse principal: if 𝑃 has a concave utility 
function 𝑣D𝑥 − 𝑠(𝑥)E, then the second-best contract is:  
 

𝑣0(𝑥 − 𝑠(𝑥))
𝑢0(𝑠(𝑥))

= 𝜆 + 𝜇 ⋅ S1 −
𝑓'(𝑥)
𝑓((𝑥)

T 

• That is, the first-best allocation of risk is given by 8
!(/%)(/))
6!()(/))

= 𝜆, and the moral 
hazard distortion is unchanged. 

• If the principal is risk neutral, then 𝑣0(𝑥 − 𝑠(𝑥)) is constant, and for simplicity we 
make it equal to one. 

More on the second best contract 
 

• Reminder: the optimal contract to implement high effort is: 

1
𝑢0(𝑠(𝑥))

= 𝜆 + 𝜇 ⋅ S1 −
𝑓'(𝑥)
𝑓((𝑥)

T
hiijiik

&%9(/)

 

• 𝑠((𝑥) is decreasing in 𝐼(𝑥) = 7"(/)
7#(/)

 (likelihood ratio), and hence it is increasing in 
1 − 𝐼(𝑥) 

• It follows that 𝑠((𝑥) is increasing in 𝑥 iff MLRP (Monotone likelihood ratio 
condition, that is, 1 − 𝐼(𝑥) is increasing): if 𝑥 is higher, 1 − 𝐼(𝑥) is higher by 
MLRP, so 𝑢0(𝑠(𝑥)) is lower, so 𝑠(𝑥) is higher by concavity of 𝑈 



• Otherwise the agent would be willing to destroy output for some outputs. (Model 
could be mis-specified then.) 

• Note: solution is as if 𝑃 is making inferences about 𝐴 's choice (pay more for 
signals that are more likely under high effort). But paradoxically, in equilibrium, 
there is actually no inference because 𝐴 's action is chosen with certainty, so 𝑃 
knows it 

• If 𝑃 is risk neutral, then the solution is the same if 𝑃 's payoff is some 𝜋(𝑥) − 𝑠(𝑥) 
instead of 𝑥 − 𝑠(𝑥). It just matters that 𝑥 is a signal of effort, not that it is 𝑃 's 
profits. 

 

On additional information 
 

• When is additional information valuable? E.g., suppose we also observe 𝑦. When 
can we design a contract 𝑠(𝑥, 𝑦) ≻ 𝑠(𝑥) ? 

• Following the same steps as in the previous setup, we get that the solution for 
info (𝑥, 𝑦) is given by the FOC 

1
𝑢0(𝑠(𝑥, 𝑦))

= 𝜆 + 𝜇 ⋅ S1 −
𝑓'(𝑥, 𝑦)
𝑓((𝑥, 𝑦)

T 

• We can show that 𝑠(𝑥, 𝑦) ≻ 𝑠(𝑥) iff 7"(/,:)
7#(/,:)

≠ 𝐼(𝑥) : 𝑦 should always be included in 
the contract in some form unless it adds no info about 𝑒, given 𝑥 

• Equivalently, 𝑦 is not useful when 𝑓;(𝑥, 𝑦) = 𝑔(𝑥)ℎ(𝑥, 𝑦), so that ℎ(𝑥, 𝑦) = 𝑃(𝑦 ∣ 𝑥) 
is independent of 𝑖 

• Note that if 𝑦 is very risky, the contract probably won't use it much, but some 
positive use is still optimal (because small changes at the margin add little risk) 

Continuous Effort 
 

• Now look at the case with continuous action: 

max
)(⋅),$

  (𝑥 − 𝑠(𝑥))𝑓(𝑥 ∣ 𝑒)𝑑𝑥

 s.t. 𝑢D𝑠(𝑥)E𝑓( 𝑥 ∣ 𝑒 )𝑑𝑥 − 𝑐(𝑒) ≥ 𝑥/𝑢D𝑠(𝑥)E𝑓(𝑥 ∣ 𝑒0)𝑑𝑥 − 𝑐(𝑒0)	∀𝑒0

𝑢(𝑠(𝑥))𝑓(𝑥 ∣ 𝑒)𝑑𝑥 − 𝑐(𝑒) ≥ 𝑢‾"

 

• Again, there is an optimization problem inside an optimization problem. 
• Here, there are infinitely many constraints so it's a harder problem 

 



• However, if 𝐴 's problem is smooth and concave, we can perhaps replace all the 
IC's with a single FOC: 

𝑢(𝑠(𝑥))𝑓$(𝑥 ∣ 𝑒)𝑑𝑥 − 𝑐0(𝑒) = 0 

• This solves the agent’s problem of choosing effort in the IC:  

𝑀𝑎𝑥$ 	𝑢(𝑠(𝑥))𝑓(𝑥 ∣ 𝑒)𝑑𝑥 − 𝑐(𝑒) 

• If the agent’s FOC is not only necessary but also sufficient, then we may use it 
instead of the original IC, and the problem becomes much simpler: 

max
)(⋅),$

  (𝑥 − 𝑠(𝑥))𝑓(𝑥 ∣ 𝑒)𝑑𝑥

 s.t. uD𝑠(𝑥)E𝑓$( 𝑥 ∣ 𝑒 )𝑑𝑥 − 𝑐0(𝑒) = 0
𝑢(𝑠(𝑥))𝑓(𝑥 ∣ 𝑒)𝑑𝑥 − 𝑐(𝑒) ≥ 𝑢‾"

 

 

• And from there, we get the FOC for 𝑃 's optimal contract problem: 
1

𝑢0(𝑠(𝑥))
= 𝜆 + 𝜇

𝑓$(𝑥 ∣ 𝑒)
𝑓(𝑥 ∣ 𝑒)

 

• Note that 𝑓$(𝑥 ∣ 𝑒) replaces 𝑓((𝑥) − 𝑓'(𝑥) in the discrete problem, which makes 
sense: it’s the difference in the probability of a given outcome 𝑥 due to a change 
in effort. 

• However, this is a local condition (based only on comparison with 𝑒 's very close 
to the chosen one) 

• This is the right solution if the local approach is valid 

• But what if it's not? 

Continuous Effort without the first-order approach 
 

• Suppose that 𝑓(𝑥 ∣ 𝑒) = 𝑁(𝑒, 𝜎4) 

• Then 7$(/∣$)
7(/∣$)

∝ /%$
=%

 

• Plugging that into our FOC, we get a contradiction: low enough 𝑥 's would get 
negative marginal utility 

• What's going on? There is no solution satisfying the FOC! 

• What's the true solution? Since the normal distribution offers potentially so much 
info (there are 𝑥 's with very extreme likelihood ratios), 𝑃 can incentivize 𝐴 by 
simply punishing very hard for very bad (but unlikely) outcomes 



• This can be done at vanishingly low cost, so we can approach the first best, but 
not reach it 

• Why? The informativeness of normal signals allows us to get arbitrarily close to 
costless punishments (but not reach it) 

• For comparison: compare a case where 𝑥 = 𝑒 + 𝜖, 𝑒 = 𝑒' or 𝑒(, and 𝜖~U[0,1] 

• Here we can implement the first best at no cost: if 𝑥 ∈ [𝑒' , 𝑒(), then agent 
definitely chose 𝑒' 

• So we can design a contract where 𝑥 ∈ [𝑒' , 𝑒() is punished very hard, otherwise 
agent gets constant income 

• On the equilibrium path, perfect insurance (because the agent can avoid the bad 
outcome with prob. 1) 

• The key to this example: moving support allows infinitely informative signals 
(infinite likelihood ratio) 

• In the normal case, by punishing only very low 𝑥 's very hard, we get a similar 
result 

• The likelihood ratio for very low 𝑥 's becomes so extreme that it's almost like the 
case with moving support 

• But can't fully reach first best (the limit of these contracts approaching the first 
best is degenerate, and has no punishment) 

First-best cases 
 

When can we implement the efficient 𝑒 without suffering any cost due to 𝐴 's risk 
aversion? 

• If 𝐴 is risk neutral (then we can just choose 𝑠(𝑥) = 𝑥 − 𝛽 to implement the 
optimum). The principal “sells” the firm to the agent for a price 𝛽 that leaves the 
agent indifferent (expected utility equal to 𝑢"), and IC disappears. 

• If 𝑒 is verifiable (then we can choose 𝑠 = 𝑐# low unless 𝑒 = 𝑒∗) 

• If 𝑥(𝜃, 𝑒) and 𝜃 are verifiable (then we can back out 𝑒 and we are back in the 
previous case) 

• With moving support 

What's wrong? 
 

• Should we be happy with this model? 



• Agent has a fairly simple, restricted choice: just choose one-dimensional level of 
effort 

• If effort is made over many days, 𝐴 just chooses the mean 

• 𝑃 has infinite-dimensional control 

• We might think that giving 𝐴 a small choice space simplifies the problem, but 
that may not be true 

• Giving 𝐴 more options can force 𝑃 to design a contract that is less manipulable, 
and hence simpler 

• This is a general point: with too many restrictions, the principal may end up with 
a very simple contract. (For an extreme example of that, see Carroll (2015) ) 

• E.g.: maximizing a smooth function over an interval is easier than over a large 
finite set 

• Maximizing a function over a plane is often easier than over some curve 
embedded in the plane 

• One-dimensional choice for 𝐴 constrains him to a small family of distributions 
(e.g. can't take a convex combination of available distributions) 

• Imagine that 𝑥 = 𝑒 + 𝜃 where 𝜃 = 𝜖 + 𝛾 

• 𝐴 chooses 𝑒, then observes 𝜖 before choosing 𝛾 at some cost (last-minute gaming 
of the outcome) 

• Even if cost of 𝛾 is high, so 𝐴 constrained to very small manipulation, this breaks 
contracts with discontinuities (agent will game near the discontinuities) 

• This happens in real life with target-based bonuses: 

• If 𝐴 just chooses one 𝑒, a contract that pays out iff 𝑥 ≥ 𝑥∗ (you get a bonus if you 
meet the quota) may be optimal, for the right distribution 𝑓 

• But if 𝐴 is making sales every day over a month, he will want to work hard as the 
end of the month approaches if he is close to the target, but shirk once he reaches 
it (or give up if too far) 

• Clearly suboptimal now, and the culprit is 𝐴 's richer choice set 

• Intuitively, we expect linear contracts to avoid this problem 

• Holmstrom and Milgrom (1987) formalizes this idea for CARA utility: 𝑢(𝑚) =
−𝑒%>(?%@($)), and normal noise 



• With this utility, there is no income effect (agent's marginal incentive to work 
does not depend on accumulated wealth) 

• Then, in a problem where agent chooses effort 𝑁 times and sees previous 
outcomes before next choice, linear contract gives the right incentives 

• Can also do in continuous time (accumulated product is Brownian motion, 𝐴 
chooses drift at every 𝑡 ) 

LEN Model 
 

• Let's study the Linear Exponential Normal model 

• (Holmstrom and Milgrom (1987) show that linear contracts are optimal in this 
case; this is hard, but finding the best linear contract is easy) 

• 𝑥 = 𝑒 + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎4) so 𝑥 ∼ 𝑁(𝑒, 𝜎4) 

• 𝑢(𝑠(𝑥) − 𝑐(𝑒)) = −𝑒%>()(/)%@($)) 

• 𝑠(𝑥) = 𝛼𝑥 + 𝛽 

• Can consider a single outcome (given linear contract, the model is effectively 
separable across outcomes) 

Certainty Equivalent 
 

• Given a random variable 𝑋 (e.g. the money payout of a lottery), the certainty 
equivalent 𝐶𝐸(𝑋) is a certain payoff that would leave the agent indifferent 
compared to getting 𝑋 

• Formally, 𝐶𝐸(𝑋) is such that 𝑢(𝐶𝐸(𝑋)) = 𝐸(𝑢(𝑋)) 

• This depends on 𝐴 's attitude towards risk (more risk averse means lower 𝐶𝐸 for 
same lottery) 

• For a normal distribution and CARA utility, get mean-variance decomposition: 

𝐶𝐸"(𝑠) = 𝐸D𝑠(𝑥)E −
1
2
𝑟 VarD𝑠(𝑥)E − 𝑐(𝑒) = 

𝐸 �(𝛼𝑥 + 𝛽)hiijiik
)(/)

� −
1
2
𝑟 Var�(𝛼𝑥 + 𝛽)hiijiik

)(/)
� − 𝑐(𝑒) = 

𝛼𝑒 + 𝛽 −
1
2
𝑟𝛼4𝜎4 − 𝑐(𝑒) 



• Meanwhile 𝐶𝐸!(𝑠) = 𝐸D𝑥 − 𝑠(𝑥)E = 𝐸 �𝑥 − (𝛼𝑥 + 𝛽)hiijiik
)(/)

� = (1 − 𝛼)𝑒 − 𝛽 

• Hence total surplus is 𝑇𝑆 = 𝑒 − &
4
𝑟𝛼4𝜎4 − 𝑐(𝑒) 

• First best effort maximizes 𝑇𝑆, satisfies 1 = 𝑐0(𝑒) 

• In practice, for a given 𝛼, 𝐴 maximizes 𝐶𝐸" and chooses 𝑒 such that 𝑐0(𝑒) = 𝛼 

• If 𝑐 is convex, this gives 𝑒A < 𝑒3B 

• Then we can choose 𝛼 to maximize TS given 𝑒A, i.e., TS	(𝛼) = 𝒆A − 𝑐(𝒆A) −
&
4
𝑟𝛼4𝜎4 

• Find solution: 𝛼∗ = &
&C>=%@!!

 

• Where does this come from? 𝛼 = 𝑐0(𝑒(𝛼)) just comes from A's IC condition 

• Then, deriving with respect to 𝛼, 1 = 𝑐00(𝑒(𝛼))𝑒0(𝛼) 

• D$
DE
= &

@!!
 is how much more 𝐴 works if I increase the commission a little 

• Substituting these into the derivative of 𝑇𝑆, we find 𝛼∗ 

• Corollary: 𝛼∗ < 1, decreasing in 𝑟 (risk aversion) and 𝜎4 (noise of signal) 

• This model offers much more natural predictions; we would trust it more to 
answer new questions 

• But note we can only do this because we have a proof that, under some conditions 
(richer 𝐴 choices), Mirrlees-style contracts are bad and linear contracts are 
optimal, and we understand the difference between the settings 

• Just saying "I don't like the optimal solution to my original problem, so let's just 
assume linear contracts" would not be kosher 

• Aside remark: these models assume increasing cost of effort for simplicity 

• But we can obtain the same results in models where cost of effort is U-shaped 
(agents intrinsically want to work up to some point): if we need them to work 
more than that, at the margin it is the same problem 

• Too many papers claiming these models are irrelevant because they assume 
agents don't like working 

Summary of LEN 
 



• Reminder: we provided a justification for looking at linear contracts (Holmstrom 
and Milgrom 1987) 

• We then found the optimal linear contract, characterized by 𝛼 = 𝑐0(𝑒(𝛼)) and 𝛼 =
&

&C>=%@!!
  

Multi-tasking 
 

• So far we studied a one-activity model where the cost of providing 𝐴 with 
incentives is burdening 𝐴 with risk 

• In multi-tasking models, 𝐴 has several activities 

• 𝑃 may want to give more incentives for activities that he can monitor well (less 
noise means 𝐴 suffers less from risk) 

• Incentives, even for perfectly monitored activities, may be distorted if cost 
function is not separable 

• Idea: if I can monitor job 1 well and 2 badly, I want to give more incentives for 1 

• But not to the efficient level: else 1 will crowd out too much 2 

• Suppose 𝐴 can invest effort into increasing quality and quantity 

• 𝑥& = 𝑒& + 𝜖& is quality, 𝑥4 = 𝑒4 is quantity 

• 𝐵(𝑒&, 𝑒4) = 𝑝&𝑒& + 𝑝&𝑒4 is 𝑃 's payoff from (𝑒&, 𝑒4) 

• 𝐶(𝑒&, 𝑒4) is 𝐴 's cost of (𝑒&, 𝑒4) 

• ( 𝑒&, 𝑒4 may interact in the cost function, e.g., if it is 𝐶(𝑒& + 𝑒4) with 𝐶 convex, 
doing more 𝑒& increases the marginal cost of 𝑒4 and vice versa) - 𝑃 designs a 
contract 𝑠(𝑥&, 𝑥4) = 𝛼𝑥& + 𝛼𝑥4 + 𝛽 

• (Again, if we assume exponential utility, ..., then linear contracts are optimal) 

• So 𝑃 solves: 

	 max
A&,A%,F

 𝐵(𝑒&, 𝑒4) − 𝐶(𝑒&, 𝑒4) −
1
2 𝑟𝛼&

4𝜎&4

 s.t. 𝛼& =
∂𝑐
∂𝑒&

𝛼4 =
∂𝑐
∂𝑒4

 

• Note: we are not exactly solving 𝑃 's problem, but instead maximizing total 
surplus 



• This is OK because the two problems are equivalent 

• We can also drop the IR condition because optimal 𝛼 's are independent of the 
preferred pie distribution, and adjusting 𝛽 is how we divide the pie (thanks to 
exponential utility) 

With more detail: 
 

• 𝑃 solves 

 

max
A&,A%,F

  𝐵(𝑒&, 𝑒4) − 𝐸D𝑠(𝑥&, 𝑥4)E ≡ (𝑝& − 𝛼&)𝑒& + (𝑝4 − 𝛼4)𝑒4 − 𝛽

 s.t. 	max
$&,$%

  �𝐸D𝑠(𝑥&, 𝑥4)E −
1
2
𝑟Var	(𝑠) − 𝐶(𝑒&, 𝑒4)�

	≡ �𝛼&𝑒& + 𝛼4𝑒4 − 𝐶(𝑒&, 𝑒4) + 𝛽 −
1
2
𝑟𝛼&4𝜎&4�

 

• To solve, go back to the total surplus problem and derive with respect to 𝛼& and 
𝛼4, getting FOCs: 

∂𝑇𝑆
𝛼&

= (𝑝& − 𝐶&)
∂𝑒&
𝛼&

+ (𝑝4 − 𝐶4)
∂𝑒4
𝛼&

− 𝑟𝛼&𝜎&4 = 0

∂𝑇𝑆
𝛼4

= (𝑝& − 𝐶&)
∂𝑒&
𝛼4

+ (𝑝4 − 𝐶4)
∂𝑒4
𝛼4

= 0
 

• Then plug in the IC conditions and their versions derived with respect to 𝛼; - 
From here, we get the optimal 𝛼 's: 

𝛼&∗ 	=
𝑝&

1 + 𝑟𝜎&4𝐶&&
𝛼4∗ 	= 𝑝4 − 𝑟𝜎&4𝐶&4𝛼&4

 

• What does this mean? 

• Both 𝛼; are lower than their efficient effort-inducing levels, 𝑝& and 𝑝4 

• But 𝛼4 < 𝑝4 only when 𝐶&4 > 0, i.e., when doing 2 increases the cost of 1 

• Idea: as in the single activity case, you want to choose 𝛼& < 𝑝& to reduce risk 

• The choice of 𝛼& is unaffected by 𝛼4 except for the fact that 𝑒4 may affect 𝐶&& 
(make the cost of 1 steeper) 

• But, because 𝑒4 crowds out 𝑒& through the cost function (if 𝐶&4 > 0 ), want to 
choose lower 𝛼4 when this interaction is strong 

• At the margin, if 𝛼4 is close to (close to 𝑝4 ), reducing it a little reduces 𝑒4 



• Impact on payoffs generated by 𝑒4 �𝑝4 −
GH
G$%
� is second-order since we are close to 

the optimum 

• But reduction in 𝑒4 increases 𝑒&, which is a first-order benefit 

• Moral of the story: low-powered incentives are good when activities are badly 
monitored 

• When 𝐴 has multiple activites that vary in the quality of monitoring, 𝑃 should 
make incentives weakest for the poorly monitored activities, but also make all 
incentives low so poorly monitored jobs don't get crowded out by the well 
monitored 

• In some examples, could even want no incentives (fixed wage) 

• This idea has big real-world implications 

Multi-task Lab 
 

• Up to now, we were in a model where 𝑃 has as many levers in the contract as 𝐴 
has jobs 

• So 𝑃 can choose how to incentivize each activity (choose both 𝛼& and 𝛼4 ), and the 
tension is between incentives and insurance against risk 

• But in many real-life jobs, 𝐴 has a lot of activities: vector (𝑒&, … , 𝑒I) 

• And 𝑃 only has access to a few performance measures 

• So 𝐴 always has opportunities to game the measures using certain 𝑒; 's that are 
well-rewarded 

• E.g.: 𝐴 is a teacher, can teach 100 different topics 

• 𝑃 has two measures: class grades and standardized exam 

• The moral will be: in this world, we want low-powered incentives even if 𝐴 is risk-
neutral 

• Beyond some point, increasing incentives will just lead to 𝐴 doing too much of 
tasks undesired by 𝑃 

• E.g. "teaching to the test" 

• E.g.: imagine that 𝐵(𝑒) = 𝑒 is 𝑃 's activity (e.g. coding) 

• (𝑒J)JK&,…,M are private activities (e.g. using the computer to chat, watch videos) 



• A's cost is 𝐶(𝑒 + ∑J  𝑒J) − ∑J  𝑣J(𝑒J) (𝐴 enjoys private activities, but they may 
increase the cost of coding by distracting 𝐴 ) 

• 𝑃 observes 𝑥 = 𝑒 + 𝜖 and pays 𝑠(𝑥) = 𝛼𝑥 + 𝛽 

• Suppose also that 𝑃 can exclude some tasks (e.g. block Youtube on the company 
network) 

• How to design the optimal contract ( 𝛼, 𝛽, exclusions)? - FOCs: 

𝛼 	= 𝐶0 �𝑒 +� 
J

 𝑒J�

𝑣J0 (𝑒J) 	= 𝐶0 = 𝛼
 

• Note: this means that, given 𝛼, total effort 𝑒 + 𝑘J𝑒J is constant! 

• Exclusions simply transfer effort from an excluded task 𝑒J to 𝑒 

• So should 𝑃 just exclude all private activities? No 

• Exclude 𝑒J iff it generates less total surplus than transferring to the job 

• Exclude 𝑘 iff 𝑣J(𝑒J) < 𝑒J 

• (Remember 𝑷 can always adjust pie through 𝛽, so efficient to make 𝐴 happy if at 
low cost: pay you less and let you use Youtube) 

• Then we still have to choose the optimal 𝛼, but note that choice of what tasks to 
exclude is conditional on 𝛼 

• If the 𝑣J are concave, then 𝑒J will be declining in 𝛼, so 8($')
$'

 increasing in 𝛼, so 
task exclusions will decrease in 𝛼 

• (If incentives are strong, 𝐴 will mostly ignore Youtube because reward for work is 
high; if they are weak, 𝐴 will shirk a lot unless Youtube is blocked) 

• Before moving on to the next topic: a reminder of why we can study moral hazard 
problems as problems of maximizing total surplus 

• 𝑃 is solving: max 𝐸𝑈! subject to (IC) and 𝐸𝑈" ≥ 𝑢‾" (IR) or equivalently 𝐶𝐸" ≥
𝑢%&(𝑢‾") 

• Under exponential utility, if a point (𝐶𝐸! , 𝐶𝐸") is achievable, then 
(𝐶𝐸! + 𝛽, 𝐶𝐸" − 𝛽) is achievable too: just transfer 𝛽 no matter what the state, or 
in other words make a new contract 𝑠4(𝑥) = 𝑠(𝑥) − 𝛽 for all 𝑥 

• Hence, if there is a contract maximizing 𝐶𝐸! + 𝐶𝐸", then it is optimal to 
implement essentially that contract no matter the desired distribution of the pie, 
and then just change the 𝛽 to achieve different distributions 



• Without exponential utility, the idea is less clear because certainty equivalents 
are not as handy, and the optimal contract changes depending on desired 
distribution due to income effects 

• But it is still true that we can essentially solve by maximizing TS subject to IC and 
IR  


